ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ddifss Unicode version

Theorem ddifss 3411
Description: Double complement under universal class. In classical logic (or given an additional hypothesis, as in ddifnel 3304), this is equality rather than subset. (Contributed by Jim Kingdon, 24-Jul-2018.)
Assertion
Ref Expression
ddifss  |-  A  C_  ( _V  \  ( _V  \  A ) )

Proof of Theorem ddifss
StepHypRef Expression
1 ssv 3215 . 2  |-  A  C_  _V
2 ssddif 3407 . 2  |-  ( A 
C_  _V  <->  A  C_  ( _V 
\  ( _V  \  A ) ) )
31, 2mpbi 145 1  |-  A  C_  ( _V  \  ( _V  \  A ) )
Colors of variables: wff set class
Syntax hints:   _Vcvv 2772    \ cdif 3163    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-dif 3168  df-in 3172  df-ss 3179
This theorem is referenced by:  ssindif0im  3520  difdifdirss  3545
  Copyright terms: Public domain W3C validator