ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ddifss Unicode version

Theorem ddifss 3345
Description: Double complement under universal class. In classical logic (or given an additional hypothesis, as in ddifnel 3238), this is equality rather than subset. (Contributed by Jim Kingdon, 24-Jul-2018.)
Assertion
Ref Expression
ddifss  |-  A  C_  ( _V  \  ( _V  \  A ) )

Proof of Theorem ddifss
StepHypRef Expression
1 ssv 3150 . 2  |-  A  C_  _V
2 ssddif 3341 . 2  |-  ( A 
C_  _V  <->  A  C_  ( _V 
\  ( _V  \  A ) ) )
31, 2mpbi 144 1  |-  A  C_  ( _V  \  ( _V  \  A ) )
Colors of variables: wff set class
Syntax hints:   _Vcvv 2712    \ cdif 3099    C_ wss 3102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-dif 3104  df-in 3108  df-ss 3115
This theorem is referenced by:  ssindif0im  3453  difdifdirss  3478
  Copyright terms: Public domain W3C validator