ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  disj2 Unicode version

Theorem disj2 3520
Description: Two ways of saying that two classes are disjoint. (Contributed by NM, 17-May-1998.)
Assertion
Ref Expression
disj2  |-  ( ( A  i^i  B )  =  (/)  <->  A  C_  ( _V 
\  B ) )

Proof of Theorem disj2
StepHypRef Expression
1 ssv 3219 . 2  |-  A  C_  _V
2 reldisj 3516 . 2  |-  ( A 
C_  _V  ->  ( ( A  i^i  B )  =  (/)  <->  A  C_  ( _V 
\  B ) ) )
31, 2ax-mp 5 1  |-  ( ( A  i^i  B )  =  (/)  <->  A  C_  ( _V 
\  B ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 105    = wceq 1373   _Vcvv 2773    \ cdif 3167    i^i cin 3169    C_ wss 3170   (/)c0 3464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-v 2775  df-dif 3172  df-in 3176  df-ss 3183  df-nul 3465
This theorem is referenced by:  ssindif0im  3524  intirr  5078  setsresg  12945  setscom  12947
  Copyright terms: Public domain W3C validator