ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undisj2 Unicode version

Theorem undisj2 3519
Description: The union of disjoint classes is disjoint. (Contributed by NM, 13-Sep-2004.)
Assertion
Ref Expression
undisj2  |-  ( ( ( A  i^i  B
)  =  (/)  /\  ( A  i^i  C )  =  (/) )  <->  ( A  i^i  ( B  u.  C
) )  =  (/) )

Proof of Theorem undisj2
StepHypRef Expression
1 un00 3507 . 2  |-  ( ( ( A  i^i  B
)  =  (/)  /\  ( A  i^i  C )  =  (/) )  <->  ( ( A  i^i  B )  u.  ( A  i^i  C
) )  =  (/) )
2 indi 3420 . . 3  |-  ( A  i^i  ( B  u.  C ) )  =  ( ( A  i^i  B )  u.  ( A  i^i  C ) )
32eqeq1i 2213 . 2  |-  ( ( A  i^i  ( B  u.  C ) )  =  (/)  <->  ( ( A  i^i  B )  u.  ( A  i^i  C
) )  =  (/) )
41, 3bitr4i 187 1  |-  ( ( ( A  i^i  B
)  =  (/)  /\  ( A  i^i  C )  =  (/) )  <->  ( A  i^i  ( B  u.  C
) )  =  (/) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373    u. cun 3164    i^i cin 3165   (/)c0 3460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator