ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undisj2 Unicode version

Theorem undisj2 3467
Description: The union of disjoint classes is disjoint. (Contributed by NM, 13-Sep-2004.)
Assertion
Ref Expression
undisj2  |-  ( ( ( A  i^i  B
)  =  (/)  /\  ( A  i^i  C )  =  (/) )  <->  ( A  i^i  ( B  u.  C
) )  =  (/) )

Proof of Theorem undisj2
StepHypRef Expression
1 un00 3455 . 2  |-  ( ( ( A  i^i  B
)  =  (/)  /\  ( A  i^i  C )  =  (/) )  <->  ( ( A  i^i  B )  u.  ( A  i^i  C
) )  =  (/) )
2 indi 3369 . . 3  |-  ( A  i^i  ( B  u.  C ) )  =  ( ( A  i^i  B )  u.  ( A  i^i  C ) )
32eqeq1i 2173 . 2  |-  ( ( A  i^i  ( B  u.  C ) )  =  (/)  <->  ( ( A  i^i  B )  u.  ( A  i^i  C
) )  =  (/) )
41, 3bitr4i 186 1  |-  ( ( ( A  i^i  B
)  =  (/)  /\  ( A  i^i  C )  =  (/) )  <->  ( A  i^i  ( B  u.  C
) )  =  (/) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    = wceq 1343    u. cun 3114    i^i cin 3115   (/)c0 3409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator