Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  sssneq Unicode version

Theorem sssneq 14035
Description: Any two elements of a subset of a singleton are equal. (Contributed by Jim Kingdon, 28-May-2024.)
Assertion
Ref Expression
sssneq  |-  ( A 
C_  { B }  ->  A. y  e.  A  A. z  e.  A  y  =  z )
Distinct variable groups:    y, A, z   
y, B, z

Proof of Theorem sssneq
StepHypRef Expression
1 simpl 108 . . . . 5  |-  ( ( A  C_  { B }  /\  ( y  e.  A  /\  z  e.  A ) )  ->  A  C_  { B }
)
2 simprl 526 . . . . 5  |-  ( ( A  C_  { B }  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
y  e.  A )
31, 2sseldd 3148 . . . 4  |-  ( ( A  C_  { B }  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
y  e.  { B } )
4 elsni 3601 . . . 4  |-  ( y  e.  { B }  ->  y  =  B )
53, 4syl 14 . . 3  |-  ( ( A  C_  { B }  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
y  =  B )
6 simprr 527 . . . . 5  |-  ( ( A  C_  { B }  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
z  e.  A )
71, 6sseldd 3148 . . . 4  |-  ( ( A  C_  { B }  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
z  e.  { B } )
8 elsni 3601 . . . 4  |-  ( z  e.  { B }  ->  z  =  B )
97, 8syl 14 . . 3  |-  ( ( A  C_  { B }  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
z  =  B )
105, 9eqtr4d 2206 . 2  |-  ( ( A  C_  { B }  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
y  =  z )
1110ralrimivva 2552 1  |-  ( A 
C_  { B }  ->  A. y  e.  A  A. z  e.  A  y  =  z )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   A.wral 2448    C_ wss 3121   {csn 3583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-v 2732  df-in 3127  df-ss 3134  df-sn 3589
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator