Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > sssneq | Unicode version |
Description: Any two elements of a subset of a singleton are equal. (Contributed by Jim Kingdon, 28-May-2024.) |
Ref | Expression |
---|---|
sssneq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . . . . 5 | |
2 | simprl 529 | . . . . 5 | |
3 | 1, 2 | sseldd 3154 | . . . 4 |
4 | elsni 3607 | . . . 4 | |
5 | 3, 4 | syl 14 | . . 3 |
6 | simprr 531 | . . . . 5 | |
7 | 1, 6 | sseldd 3154 | . . . 4 |
8 | elsni 3607 | . . . 4 | |
9 | 7, 8 | syl 14 | . . 3 |
10 | 5, 9 | eqtr4d 2211 | . 2 |
11 | 10 | ralrimivva 2557 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 104 wceq 1353 wcel 2146 wral 2453 wss 3127 csn 3589 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-ext 2157 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1459 df-sb 1761 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-v 2737 df-in 3133 df-ss 3140 df-sn 3595 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |