Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  sssneq Unicode version

Theorem sssneq 16141
Description: Any two elements of a subset of a singleton are equal. (Contributed by Jim Kingdon, 28-May-2024.)
Assertion
Ref Expression
sssneq  |-  ( A 
C_  { B }  ->  A. y  e.  A  A. z  e.  A  y  =  z )
Distinct variable groups:    y, A, z   
y, B, z

Proof of Theorem sssneq
StepHypRef Expression
1 simpl 109 . . . . 5  |-  ( ( A  C_  { B }  /\  ( y  e.  A  /\  z  e.  A ) )  ->  A  C_  { B }
)
2 simprl 529 . . . . 5  |-  ( ( A  C_  { B }  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
y  e.  A )
31, 2sseldd 3202 . . . 4  |-  ( ( A  C_  { B }  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
y  e.  { B } )
4 elsni 3661 . . . 4  |-  ( y  e.  { B }  ->  y  =  B )
53, 4syl 14 . . 3  |-  ( ( A  C_  { B }  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
y  =  B )
6 simprr 531 . . . . 5  |-  ( ( A  C_  { B }  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
z  e.  A )
71, 6sseldd 3202 . . . 4  |-  ( ( A  C_  { B }  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
z  e.  { B } )
8 elsni 3661 . . . 4  |-  ( z  e.  { B }  ->  z  =  B )
97, 8syl 14 . . 3  |-  ( ( A  C_  { B }  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
z  =  B )
105, 9eqtr4d 2243 . 2  |-  ( ( A  C_  { B }  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
y  =  z )
1110ralrimivva 2590 1  |-  ( A 
C_  { B }  ->  A. y  e.  A  A. z  e.  A  y  =  z )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   A.wral 2486    C_ wss 3174   {csn 3643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-in 3180  df-ss 3187  df-sn 3649
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator