Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  sssneq Unicode version

Theorem sssneq 14312
Description: Any two elements of a subset of a singleton are equal. (Contributed by Jim Kingdon, 28-May-2024.)
Assertion
Ref Expression
sssneq  |-  ( A 
C_  { B }  ->  A. y  e.  A  A. z  e.  A  y  =  z )
Distinct variable groups:    y, A, z   
y, B, z

Proof of Theorem sssneq
StepHypRef Expression
1 simpl 109 . . . . 5  |-  ( ( A  C_  { B }  /\  ( y  e.  A  /\  z  e.  A ) )  ->  A  C_  { B }
)
2 simprl 529 . . . . 5  |-  ( ( A  C_  { B }  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
y  e.  A )
31, 2sseldd 3154 . . . 4  |-  ( ( A  C_  { B }  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
y  e.  { B } )
4 elsni 3607 . . . 4  |-  ( y  e.  { B }  ->  y  =  B )
53, 4syl 14 . . 3  |-  ( ( A  C_  { B }  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
y  =  B )
6 simprr 531 . . . . 5  |-  ( ( A  C_  { B }  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
z  e.  A )
71, 6sseldd 3154 . . . 4  |-  ( ( A  C_  { B }  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
z  e.  { B } )
8 elsni 3607 . . . 4  |-  ( z  e.  { B }  ->  z  =  B )
97, 8syl 14 . . 3  |-  ( ( A  C_  { B }  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
z  =  B )
105, 9eqtr4d 2211 . 2  |-  ( ( A  C_  { B }  /\  ( y  e.  A  /\  z  e.  A ) )  -> 
y  =  z )
1110ralrimivva 2557 1  |-  ( A 
C_  { B }  ->  A. y  e.  A  A. z  e.  A  y  =  z )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2146   A.wral 2453    C_ wss 3127   {csn 3589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-ext 2157
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1459  df-sb 1761  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-v 2737  df-in 3133  df-ss 3140  df-sn 3595
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator