Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  sssneq GIF version

Theorem sssneq 16327
Description: Any two elements of a subset of a singleton are equal. (Contributed by Jim Kingdon, 28-May-2024.)
Assertion
Ref Expression
sssneq (𝐴 ⊆ {𝐵} → ∀𝑦𝐴𝑧𝐴 𝑦 = 𝑧)
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝐵,𝑧

Proof of Theorem sssneq
StepHypRef Expression
1 simpl 109 . . . . 5 ((𝐴 ⊆ {𝐵} ∧ (𝑦𝐴𝑧𝐴)) → 𝐴 ⊆ {𝐵})
2 simprl 529 . . . . 5 ((𝐴 ⊆ {𝐵} ∧ (𝑦𝐴𝑧𝐴)) → 𝑦𝐴)
31, 2sseldd 3225 . . . 4 ((𝐴 ⊆ {𝐵} ∧ (𝑦𝐴𝑧𝐴)) → 𝑦 ∈ {𝐵})
4 elsni 3684 . . . 4 (𝑦 ∈ {𝐵} → 𝑦 = 𝐵)
53, 4syl 14 . . 3 ((𝐴 ⊆ {𝐵} ∧ (𝑦𝐴𝑧𝐴)) → 𝑦 = 𝐵)
6 simprr 531 . . . . 5 ((𝐴 ⊆ {𝐵} ∧ (𝑦𝐴𝑧𝐴)) → 𝑧𝐴)
71, 6sseldd 3225 . . . 4 ((𝐴 ⊆ {𝐵} ∧ (𝑦𝐴𝑧𝐴)) → 𝑧 ∈ {𝐵})
8 elsni 3684 . . . 4 (𝑧 ∈ {𝐵} → 𝑧 = 𝐵)
97, 8syl 14 . . 3 ((𝐴 ⊆ {𝐵} ∧ (𝑦𝐴𝑧𝐴)) → 𝑧 = 𝐵)
105, 9eqtr4d 2265 . 2 ((𝐴 ⊆ {𝐵} ∧ (𝑦𝐴𝑧𝐴)) → 𝑦 = 𝑧)
1110ralrimivva 2612 1 (𝐴 ⊆ {𝐵} → ∀𝑦𝐴𝑧𝐴 𝑦 = 𝑧)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wral 2508  wss 3197  {csn 3666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-in 3203  df-ss 3210  df-sn 3672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator