| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > sssneq | GIF version | ||
| Description: Any two elements of a subset of a singleton are equal. (Contributed by Jim Kingdon, 28-May-2024.) |
| Ref | Expression |
|---|---|
| sssneq | ⊢ (𝐴 ⊆ {𝐵} → ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 𝑦 = 𝑧) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 109 | . . . . 5 ⊢ ((𝐴 ⊆ {𝐵} ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝐴 ⊆ {𝐵}) | |
| 2 | simprl 529 | . . . . 5 ⊢ ((𝐴 ⊆ {𝐵} ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑦 ∈ 𝐴) | |
| 3 | 1, 2 | sseldd 3193 | . . . 4 ⊢ ((𝐴 ⊆ {𝐵} ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑦 ∈ {𝐵}) |
| 4 | elsni 3650 | . . . 4 ⊢ (𝑦 ∈ {𝐵} → 𝑦 = 𝐵) | |
| 5 | 3, 4 | syl 14 | . . 3 ⊢ ((𝐴 ⊆ {𝐵} ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑦 = 𝐵) |
| 6 | simprr 531 | . . . . 5 ⊢ ((𝐴 ⊆ {𝐵} ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑧 ∈ 𝐴) | |
| 7 | 1, 6 | sseldd 3193 | . . . 4 ⊢ ((𝐴 ⊆ {𝐵} ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑧 ∈ {𝐵}) |
| 8 | elsni 3650 | . . . 4 ⊢ (𝑧 ∈ {𝐵} → 𝑧 = 𝐵) | |
| 9 | 7, 8 | syl 14 | . . 3 ⊢ ((𝐴 ⊆ {𝐵} ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑧 = 𝐵) |
| 10 | 5, 9 | eqtr4d 2240 | . 2 ⊢ ((𝐴 ⊆ {𝐵} ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑦 = 𝑧) |
| 11 | 10 | ralrimivva 2587 | 1 ⊢ (𝐴 ⊆ {𝐵} → ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 𝑦 = 𝑧) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 ∀wral 2483 ⊆ wss 3165 {csn 3632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-v 2773 df-in 3171 df-ss 3178 df-sn 3638 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |