![]() |
Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > Mathboxes > sssneq | GIF version |
Description: Any two elements of a subset of a singleton are equal. (Contributed by Jim Kingdon, 28-May-2024.) |
Ref | Expression |
---|---|
sssneq | ⊢ (𝐴 ⊆ {𝐵} → ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 𝑦 = 𝑧) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 109 | . . . . 5 ⊢ ((𝐴 ⊆ {𝐵} ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝐴 ⊆ {𝐵}) | |
2 | simprl 529 | . . . . 5 ⊢ ((𝐴 ⊆ {𝐵} ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑦 ∈ 𝐴) | |
3 | 1, 2 | sseldd 3158 | . . . 4 ⊢ ((𝐴 ⊆ {𝐵} ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑦 ∈ {𝐵}) |
4 | elsni 3612 | . . . 4 ⊢ (𝑦 ∈ {𝐵} → 𝑦 = 𝐵) | |
5 | 3, 4 | syl 14 | . . 3 ⊢ ((𝐴 ⊆ {𝐵} ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑦 = 𝐵) |
6 | simprr 531 | . . . . 5 ⊢ ((𝐴 ⊆ {𝐵} ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑧 ∈ 𝐴) | |
7 | 1, 6 | sseldd 3158 | . . . 4 ⊢ ((𝐴 ⊆ {𝐵} ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑧 ∈ {𝐵}) |
8 | elsni 3612 | . . . 4 ⊢ (𝑧 ∈ {𝐵} → 𝑧 = 𝐵) | |
9 | 7, 8 | syl 14 | . . 3 ⊢ ((𝐴 ⊆ {𝐵} ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑧 = 𝐵) |
10 | 5, 9 | eqtr4d 2213 | . 2 ⊢ ((𝐴 ⊆ {𝐵} ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → 𝑦 = 𝑧) |
11 | 10 | ralrimivva 2559 | 1 ⊢ (𝐴 ⊆ {𝐵} → ∀𝑦 ∈ 𝐴 ∀𝑧 ∈ 𝐴 𝑦 = 𝑧) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2148 ∀wral 2455 ⊆ wss 3131 {csn 3594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ral 2460 df-v 2741 df-in 3137 df-ss 3144 df-sn 3600 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |