Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  sssneq GIF version

Theorem sssneq 13892
Description: Any two elements of a subset of a singleton are equal. (Contributed by Jim Kingdon, 28-May-2024.)
Assertion
Ref Expression
sssneq (𝐴 ⊆ {𝐵} → ∀𝑦𝐴𝑧𝐴 𝑦 = 𝑧)
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝐵,𝑧

Proof of Theorem sssneq
StepHypRef Expression
1 simpl 108 . . . . 5 ((𝐴 ⊆ {𝐵} ∧ (𝑦𝐴𝑧𝐴)) → 𝐴 ⊆ {𝐵})
2 simprl 521 . . . . 5 ((𝐴 ⊆ {𝐵} ∧ (𝑦𝐴𝑧𝐴)) → 𝑦𝐴)
31, 2sseldd 3143 . . . 4 ((𝐴 ⊆ {𝐵} ∧ (𝑦𝐴𝑧𝐴)) → 𝑦 ∈ {𝐵})
4 elsni 3594 . . . 4 (𝑦 ∈ {𝐵} → 𝑦 = 𝐵)
53, 4syl 14 . . 3 ((𝐴 ⊆ {𝐵} ∧ (𝑦𝐴𝑧𝐴)) → 𝑦 = 𝐵)
6 simprr 522 . . . . 5 ((𝐴 ⊆ {𝐵} ∧ (𝑦𝐴𝑧𝐴)) → 𝑧𝐴)
71, 6sseldd 3143 . . . 4 ((𝐴 ⊆ {𝐵} ∧ (𝑦𝐴𝑧𝐴)) → 𝑧 ∈ {𝐵})
8 elsni 3594 . . . 4 (𝑧 ∈ {𝐵} → 𝑧 = 𝐵)
97, 8syl 14 . . 3 ((𝐴 ⊆ {𝐵} ∧ (𝑦𝐴𝑧𝐴)) → 𝑧 = 𝐵)
105, 9eqtr4d 2201 . 2 ((𝐴 ⊆ {𝐵} ∧ (𝑦𝐴𝑧𝐴)) → 𝑦 = 𝑧)
1110ralrimivva 2548 1 (𝐴 ⊆ {𝐵} → ∀𝑦𝐴𝑧𝐴 𝑦 = 𝑧)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1343  wcel 2136  wral 2444  wss 3116  {csn 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-in 3122  df-ss 3129  df-sn 3582
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator