Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  sssneq GIF version

Theorem sssneq 14790
Description: Any two elements of a subset of a singleton are equal. (Contributed by Jim Kingdon, 28-May-2024.)
Assertion
Ref Expression
sssneq (𝐴 ⊆ {𝐵} → ∀𝑦𝐴𝑧𝐴 𝑦 = 𝑧)
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝐵,𝑧

Proof of Theorem sssneq
StepHypRef Expression
1 simpl 109 . . . . 5 ((𝐴 ⊆ {𝐵} ∧ (𝑦𝐴𝑧𝐴)) → 𝐴 ⊆ {𝐵})
2 simprl 529 . . . . 5 ((𝐴 ⊆ {𝐵} ∧ (𝑦𝐴𝑧𝐴)) → 𝑦𝐴)
31, 2sseldd 3158 . . . 4 ((𝐴 ⊆ {𝐵} ∧ (𝑦𝐴𝑧𝐴)) → 𝑦 ∈ {𝐵})
4 elsni 3612 . . . 4 (𝑦 ∈ {𝐵} → 𝑦 = 𝐵)
53, 4syl 14 . . 3 ((𝐴 ⊆ {𝐵} ∧ (𝑦𝐴𝑧𝐴)) → 𝑦 = 𝐵)
6 simprr 531 . . . . 5 ((𝐴 ⊆ {𝐵} ∧ (𝑦𝐴𝑧𝐴)) → 𝑧𝐴)
71, 6sseldd 3158 . . . 4 ((𝐴 ⊆ {𝐵} ∧ (𝑦𝐴𝑧𝐴)) → 𝑧 ∈ {𝐵})
8 elsni 3612 . . . 4 (𝑧 ∈ {𝐵} → 𝑧 = 𝐵)
97, 8syl 14 . . 3 ((𝐴 ⊆ {𝐵} ∧ (𝑦𝐴𝑧𝐴)) → 𝑧 = 𝐵)
105, 9eqtr4d 2213 . 2 ((𝐴 ⊆ {𝐵} ∧ (𝑦𝐴𝑧𝐴)) → 𝑦 = 𝑧)
1110ralrimivva 2559 1 (𝐴 ⊆ {𝐵} → ∀𝑦𝐴𝑧𝐴 𝑦 = 𝑧)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2148  wral 2455  wss 3131  {csn 3594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-v 2741  df-in 3137  df-ss 3144  df-sn 3600
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator