Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  sssneq GIF version

Theorem sssneq 15646
Description: Any two elements of a subset of a singleton are equal. (Contributed by Jim Kingdon, 28-May-2024.)
Assertion
Ref Expression
sssneq (𝐴 ⊆ {𝐵} → ∀𝑦𝐴𝑧𝐴 𝑦 = 𝑧)
Distinct variable groups:   𝑦,𝐴,𝑧   𝑦,𝐵,𝑧

Proof of Theorem sssneq
StepHypRef Expression
1 simpl 109 . . . . 5 ((𝐴 ⊆ {𝐵} ∧ (𝑦𝐴𝑧𝐴)) → 𝐴 ⊆ {𝐵})
2 simprl 529 . . . . 5 ((𝐴 ⊆ {𝐵} ∧ (𝑦𝐴𝑧𝐴)) → 𝑦𝐴)
31, 2sseldd 3184 . . . 4 ((𝐴 ⊆ {𝐵} ∧ (𝑦𝐴𝑧𝐴)) → 𝑦 ∈ {𝐵})
4 elsni 3640 . . . 4 (𝑦 ∈ {𝐵} → 𝑦 = 𝐵)
53, 4syl 14 . . 3 ((𝐴 ⊆ {𝐵} ∧ (𝑦𝐴𝑧𝐴)) → 𝑦 = 𝐵)
6 simprr 531 . . . . 5 ((𝐴 ⊆ {𝐵} ∧ (𝑦𝐴𝑧𝐴)) → 𝑧𝐴)
71, 6sseldd 3184 . . . 4 ((𝐴 ⊆ {𝐵} ∧ (𝑦𝐴𝑧𝐴)) → 𝑧 ∈ {𝐵})
8 elsni 3640 . . . 4 (𝑧 ∈ {𝐵} → 𝑧 = 𝐵)
97, 8syl 14 . . 3 ((𝐴 ⊆ {𝐵} ∧ (𝑦𝐴𝑧𝐴)) → 𝑧 = 𝐵)
105, 9eqtr4d 2232 . 2 ((𝐴 ⊆ {𝐵} ∧ (𝑦𝐴𝑧𝐴)) → 𝑦 = 𝑧)
1110ralrimivva 2579 1 (𝐴 ⊆ {𝐵} → ∀𝑦𝐴𝑧𝐴 𝑦 = 𝑧)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wral 2475  wss 3157  {csn 3622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-in 3163  df-ss 3170  df-sn 3628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator