Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  strcollnf Unicode version

Theorem strcollnf 15008
Description: Version of ax-strcoll 15005 with one disjoint variable condition removed, the other disjoint variable condition replaced with a nonfreeness hypothesis, and without initial universal quantifier. Version of strcoll2 15006 with the disjoint variable condition on  b , 
ph replaced with a nonfreeness hypothesis.

This proof aims to demonstrate a standard technique, but strcoll2 15006 will generally suffice: since the theorem asserts the existence of a set  b, supposing that that setvar does not occur in the already defined  ph is not a big constraint. (Contributed by BJ, 21-Oct-2019.)

Hypothesis
Ref Expression
strcollnf.nf  |-  F/ b
ph
Assertion
Ref Expression
strcollnf  |-  ( A. x  e.  a  E. y ph  ->  E. b
( A. x  e.  a  E. y  e.  b  ph  /\  A. y  e.  b  E. x  e.  a  ph ) )
Distinct variable group:    a, b, x, y
Allowed substitution hints:    ph( x, y, a, b)

Proof of Theorem strcollnf
StepHypRef Expression
1 strcollnft 15007 . 2  |-  ( A. x A. y F/ b
ph  ->  ( A. x  e.  a  E. y ph  ->  E. b ( A. x  e.  a  E. y  e.  b  ph  /\ 
A. y  e.  b  E. x  e.  a 
ph ) ) )
2 strcollnf.nf . . 3  |-  F/ b
ph
32ax-gen 1459 . 2  |-  A. y F/ b ph
41, 3mpg 1461 1  |-  ( A. x  e.  a  E. y ph  ->  E. b
( A. x  e.  a  E. y  e.  b  ph  /\  A. y  e.  b  E. x  e.  a  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1361   F/wnf 1470   E.wex 1502   A.wral 2465   E.wrex 2466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169  ax-strcoll 15005
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator