Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  strcollnf Unicode version

Theorem strcollnf 13867
Description: Version of ax-strcoll 13864 with one disjoint variable condition removed, the other disjoint variable condition replaced with a nonfreeness hypothesis, and without initial universal quantifier. Version of strcoll2 13865 with the disjoint variable condition on  b , 
ph replaced with a nonfreeness hypothesis.

This proof aims to demonstrate a standard technique, but strcoll2 13865 will generally suffice: since the theorem asserts the existence of a set  b, supposing that that setvar does not occur in the already defined  ph is not a big constraint. (Contributed by BJ, 21-Oct-2019.)

Hypothesis
Ref Expression
strcollnf.nf  |-  F/ b
ph
Assertion
Ref Expression
strcollnf  |-  ( A. x  e.  a  E. y ph  ->  E. b
( A. x  e.  a  E. y  e.  b  ph  /\  A. y  e.  b  E. x  e.  a  ph ) )
Distinct variable group:    a, b, x, y
Allowed substitution hints:    ph( x, y, a, b)

Proof of Theorem strcollnf
StepHypRef Expression
1 strcollnft 13866 . 2  |-  ( A. x A. y F/ b
ph  ->  ( A. x  e.  a  E. y ph  ->  E. b ( A. x  e.  a  E. y  e.  b  ph  /\ 
A. y  e.  b  E. x  e.  a 
ph ) ) )
2 strcollnf.nf . . 3  |-  F/ b
ph
32ax-gen 1437 . 2  |-  A. y F/ b ph
41, 3mpg 1439 1  |-  ( A. x  e.  a  E. y ph  ->  E. b
( A. x  e.  a  E. y  e.  b  ph  /\  A. y  e.  b  E. x  e.  a  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1341   F/wnf 1448   E.wex 1480   A.wral 2444   E.wrex 2445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147  ax-strcoll 13864
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator