Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  strcollnf Unicode version

Theorem strcollnf 15921
Description: Version of ax-strcoll 15918 with one disjoint variable condition removed, the other disjoint variable condition replaced with a nonfreeness hypothesis, and without initial universal quantifier. Version of strcoll2 15919 with the disjoint variable condition on  b , 
ph replaced with a nonfreeness hypothesis.

This proof aims to demonstrate a standard technique, but strcoll2 15919 will generally suffice: since the theorem asserts the existence of a set  b, supposing that that setvar does not occur in the already defined  ph is not a big constraint. (Contributed by BJ, 21-Oct-2019.)

Hypothesis
Ref Expression
strcollnf.nf  |-  F/ b
ph
Assertion
Ref Expression
strcollnf  |-  ( A. x  e.  a  E. y ph  ->  E. b
( A. x  e.  a  E. y  e.  b  ph  /\  A. y  e.  b  E. x  e.  a  ph ) )
Distinct variable group:    a, b, x, y
Allowed substitution hints:    ph( x, y, a, b)

Proof of Theorem strcollnf
StepHypRef Expression
1 strcollnft 15920 . 2  |-  ( A. x A. y F/ b
ph  ->  ( A. x  e.  a  E. y ph  ->  E. b ( A. x  e.  a  E. y  e.  b  ph  /\ 
A. y  e.  b  E. x  e.  a 
ph ) ) )
2 strcollnf.nf . . 3  |-  F/ b
ph
32ax-gen 1472 . 2  |-  A. y F/ b ph
41, 3mpg 1474 1  |-  ( A. x  e.  a  E. y ph  ->  E. b
( A. x  e.  a  E. y  e.  b  ph  /\  A. y  e.  b  E. x  e.  a  ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1371   F/wnf 1483   E.wex 1515   A.wral 2484   E.wrex 2485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187  ax-strcoll 15918
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator