| Mathbox for BJ | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > strcollnf | GIF version | ||
| Description: Version of ax-strcoll 15628 with one disjoint variable condition
removed,
       the other disjoint variable condition replaced with a nonfreeness
       hypothesis, and without initial universal quantifier.  Version of
       strcoll2 15629 with the disjoint variable condition on
𝑏, 𝜑 replaced
       with a nonfreeness hypothesis.
 This proof aims to demonstrate a standard technique, but strcoll2 15629 will generally suffice: since the theorem asserts the existence of a set 𝑏, supposing that that setvar does not occur in the already defined 𝜑 is not a big constraint. (Contributed by BJ, 21-Oct-2019.)  | 
| Ref | Expression | 
|---|---|
| strcollnf.nf | ⊢ Ⅎ𝑏𝜑 | 
| Ref | Expression | 
|---|---|
| strcollnf | ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | strcollnft 15630 | . 2 ⊢ (∀𝑥∀𝑦Ⅎ𝑏𝜑 → (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑))) | |
| 2 | strcollnf.nf | . . 3 ⊢ Ⅎ𝑏𝜑 | |
| 3 | 2 | ax-gen 1463 | . 2 ⊢ ∀𝑦Ⅎ𝑏𝜑 | 
| 4 | 1, 3 | mpg 1465 | 1 ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1362 Ⅎwnf 1474 ∃wex 1506 ∀wral 2475 ∃wrex 2476 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 ax-strcoll 15628 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |