Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  strcollnf GIF version

Theorem strcollnf 12768
Description: Version of ax-strcoll 12765 with one disjoint variable condition removed, the other disjoint variable condition replaced with a non-freeness hypothesis, and without initial universal quantifier. (Contributed by BJ, 21-Oct-2019.)
Hypothesis
Ref Expression
strcollnf.nf 𝑏𝜑
Assertion
Ref Expression
strcollnf (∀𝑥𝑎𝑦𝜑 → ∃𝑏𝑦(𝑦𝑏 ↔ ∃𝑥𝑎 𝜑))
Distinct variable group:   𝑎,𝑏,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem strcollnf
StepHypRef Expression
1 strcollnft 12767 . 2 (∀𝑥𝑦𝑏𝜑 → (∀𝑥𝑎𝑦𝜑 → ∃𝑏𝑦(𝑦𝑏 ↔ ∃𝑥𝑎 𝜑)))
2 strcollnf.nf . . 3 𝑏𝜑
32ax-gen 1393 . 2 𝑦𝑏𝜑
41, 3mpg 1395 1 (∀𝑥𝑎𝑦𝜑 → ∃𝑏𝑦(𝑦𝑏 ↔ ∃𝑥𝑎 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104  wal 1297  wnf 1404  wex 1436  wral 2375  wrex 2376
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-strcoll 12765
This theorem depends on definitions:  df-bi 116  df-tru 1302  df-nf 1405  df-sb 1704  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator