Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  strcollnf GIF version

Theorem strcollnf 15033
Description: Version of ax-strcoll 15030 with one disjoint variable condition removed, the other disjoint variable condition replaced with a nonfreeness hypothesis, and without initial universal quantifier. Version of strcoll2 15031 with the disjoint variable condition on 𝑏, 𝜑 replaced with a nonfreeness hypothesis.

This proof aims to demonstrate a standard technique, but strcoll2 15031 will generally suffice: since the theorem asserts the existence of a set 𝑏, supposing that that setvar does not occur in the already defined 𝜑 is not a big constraint. (Contributed by BJ, 21-Oct-2019.)

Hypothesis
Ref Expression
strcollnf.nf 𝑏𝜑
Assertion
Ref Expression
strcollnf (∀𝑥𝑎𝑦𝜑 → ∃𝑏(∀𝑥𝑎𝑦𝑏 𝜑 ∧ ∀𝑦𝑏𝑥𝑎 𝜑))
Distinct variable group:   𝑎,𝑏,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑎,𝑏)

Proof of Theorem strcollnf
StepHypRef Expression
1 strcollnft 15032 . 2 (∀𝑥𝑦𝑏𝜑 → (∀𝑥𝑎𝑦𝜑 → ∃𝑏(∀𝑥𝑎𝑦𝑏 𝜑 ∧ ∀𝑦𝑏𝑥𝑎 𝜑)))
2 strcollnf.nf . . 3 𝑏𝜑
32ax-gen 1459 . 2 𝑦𝑏𝜑
41, 3mpg 1461 1 (∀𝑥𝑎𝑦𝜑 → ∃𝑏(∀𝑥𝑎𝑦𝑏 𝜑 ∧ ∀𝑦𝑏𝑥𝑎 𝜑))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wal 1361  wnf 1470  wex 1502  wral 2465  wrex 2466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169  ax-strcoll 15030
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ral 2470  df-rex 2471
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator