Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > strcollnf | GIF version |
Description: Version of ax-strcoll 14017 with one disjoint variable condition
removed,
the other disjoint variable condition replaced with a nonfreeness
hypothesis, and without initial universal quantifier. Version of
strcoll2 14018 with the disjoint variable condition on
𝑏, 𝜑 replaced
with a nonfreeness hypothesis.
This proof aims to demonstrate a standard technique, but strcoll2 14018 will generally suffice: since the theorem asserts the existence of a set 𝑏, supposing that that setvar does not occur in the already defined 𝜑 is not a big constraint. (Contributed by BJ, 21-Oct-2019.) |
Ref | Expression |
---|---|
strcollnf.nf | ⊢ Ⅎ𝑏𝜑 |
Ref | Expression |
---|---|
strcollnf | ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strcollnft 14019 | . 2 ⊢ (∀𝑥∀𝑦Ⅎ𝑏𝜑 → (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑))) | |
2 | strcollnf.nf | . . 3 ⊢ Ⅎ𝑏𝜑 | |
3 | 2 | ax-gen 1442 | . 2 ⊢ ∀𝑦Ⅎ𝑏𝜑 |
4 | 1, 3 | mpg 1444 | 1 ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∀wal 1346 Ⅎwnf 1453 ∃wex 1485 ∀wral 2448 ∃wrex 2449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 ax-strcoll 14017 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |