| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > strcollnf | GIF version | ||
| Description: Version of ax-strcoll 16345 with one disjoint variable condition
removed,
the other disjoint variable condition replaced with a nonfreeness
hypothesis, and without initial universal quantifier. Version of
strcoll2 16346 with the disjoint variable condition on
𝑏, 𝜑 replaced
with a nonfreeness hypothesis.
This proof aims to demonstrate a standard technique, but strcoll2 16346 will generally suffice: since the theorem asserts the existence of a set 𝑏, supposing that that setvar does not occur in the already defined 𝜑 is not a big constraint. (Contributed by BJ, 21-Oct-2019.) |
| Ref | Expression |
|---|---|
| strcollnf.nf | ⊢ Ⅎ𝑏𝜑 |
| Ref | Expression |
|---|---|
| strcollnf | ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strcollnft 16347 | . 2 ⊢ (∀𝑥∀𝑦Ⅎ𝑏𝜑 → (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑))) | |
| 2 | strcollnf.nf | . . 3 ⊢ Ⅎ𝑏𝜑 | |
| 3 | 2 | ax-gen 1495 | . 2 ⊢ ∀𝑦Ⅎ𝑏𝜑 |
| 4 | 1, 3 | mpg 1497 | 1 ⊢ (∀𝑥 ∈ 𝑎 ∃𝑦𝜑 → ∃𝑏(∀𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝜑 ∧ ∀𝑦 ∈ 𝑏 ∃𝑥 ∈ 𝑎 𝜑)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∀wal 1393 Ⅎwnf 1506 ∃wex 1538 ∀wral 2508 ∃wrex 2509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 ax-strcoll 16345 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |