ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funssxp Unicode version

Theorem funssxp 5492
Description: Two ways of specifying a partial function from  A to  B. (Contributed by NM, 13-Nov-2007.)
Assertion
Ref Expression
funssxp  |-  ( ( Fun  F  /\  F  C_  ( A  X.  B
) )  <->  ( F : dom  F --> B  /\  dom  F  C_  A )
)

Proof of Theorem funssxp
StepHypRef Expression
1 funfn 5347 . . . . . 6  |-  ( Fun 
F  <->  F  Fn  dom  F )
21biimpi 120 . . . . 5  |-  ( Fun 
F  ->  F  Fn  dom  F )
3 rnss 4953 . . . . . 6  |-  ( F 
C_  ( A  X.  B )  ->  ran  F 
C_  ran  ( A  X.  B ) )
4 rnxpss 5159 . . . . . 6  |-  ran  ( A  X.  B )  C_  B
53, 4sstrdi 3236 . . . . 5  |-  ( F 
C_  ( A  X.  B )  ->  ran  F 
C_  B )
62, 5anim12i 338 . . . 4  |-  ( ( Fun  F  /\  F  C_  ( A  X.  B
) )  ->  ( F  Fn  dom  F  /\  ran  F  C_  B )
)
7 df-f 5321 . . . 4  |-  ( F : dom  F --> B  <->  ( F  Fn  dom  F  /\  ran  F 
C_  B ) )
86, 7sylibr 134 . . 3  |-  ( ( Fun  F  /\  F  C_  ( A  X.  B
) )  ->  F : dom  F --> B )
9 dmss 4921 . . . . 5  |-  ( F 
C_  ( A  X.  B )  ->  dom  F 
C_  dom  ( A  X.  B ) )
10 dmxpss 5158 . . . . 5  |-  dom  ( A  X.  B )  C_  A
119, 10sstrdi 3236 . . . 4  |-  ( F 
C_  ( A  X.  B )  ->  dom  F 
C_  A )
1211adantl 277 . . 3  |-  ( ( Fun  F  /\  F  C_  ( A  X.  B
) )  ->  dom  F 
C_  A )
138, 12jca 306 . 2  |-  ( ( Fun  F  /\  F  C_  ( A  X.  B
) )  ->  ( F : dom  F --> B  /\  dom  F  C_  A )
)
14 ffun 5475 . . . 4  |-  ( F : dom  F --> B  ->  Fun  F )
1514adantr 276 . . 3  |-  ( ( F : dom  F --> B  /\  dom  F  C_  A )  ->  Fun  F )
16 fssxp 5490 . . . 4  |-  ( F : dom  F --> B  ->  F  C_  ( dom  F  X.  B ) )
17 xpss1 4828 . . . 4  |-  ( dom 
F  C_  A  ->  ( dom  F  X.  B
)  C_  ( A  X.  B ) )
1816, 17sylan9ss 3237 . . 3  |-  ( ( F : dom  F --> B  /\  dom  F  C_  A )  ->  F  C_  ( A  X.  B
) )
1915, 18jca 306 . 2  |-  ( ( F : dom  F --> B  /\  dom  F  C_  A )  ->  ( Fun  F  /\  F  C_  ( A  X.  B
) ) )
2013, 19impbii 126 1  |-  ( ( Fun  F  /\  F  C_  ( A  X.  B
) )  <->  ( F : dom  F --> B  /\  dom  F  C_  A )
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    C_ wss 3197    X. cxp 4716   dom cdm 4718   ran crn 4719   Fun wfun 5311    Fn wfn 5312   -->wf 5313
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-br 4083  df-opab 4145  df-xp 4724  df-rel 4725  df-cnv 4726  df-dm 4728  df-rn 4729  df-fun 5319  df-fn 5320  df-f 5321
This theorem is referenced by:  elpm2g  6810  casef  7251
  Copyright terms: Public domain W3C validator