Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funssxp | Unicode version |
Description: Two ways of specifying a partial function from to . (Contributed by NM, 13-Nov-2007.) |
Ref | Expression |
---|---|
funssxp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfn 5218 | . . . . . 6 | |
2 | 1 | biimpi 119 | . . . . 5 |
3 | rnss 4834 | . . . . . 6 | |
4 | rnxpss 5035 | . . . . . 6 | |
5 | 3, 4 | sstrdi 3154 | . . . . 5 |
6 | 2, 5 | anim12i 336 | . . . 4 |
7 | df-f 5192 | . . . 4 | |
8 | 6, 7 | sylibr 133 | . . 3 |
9 | dmss 4803 | . . . . 5 | |
10 | dmxpss 5034 | . . . . 5 | |
11 | 9, 10 | sstrdi 3154 | . . . 4 |
12 | 11 | adantl 275 | . . 3 |
13 | 8, 12 | jca 304 | . 2 |
14 | ffun 5340 | . . . 4 | |
15 | 14 | adantr 274 | . . 3 |
16 | fssxp 5355 | . . . 4 | |
17 | xpss1 4714 | . . . 4 | |
18 | 16, 17 | sylan9ss 3155 | . . 3 |
19 | 15, 18 | jca 304 | . 2 |
20 | 13, 19 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wss 3116 cxp 4602 cdm 4604 crn 4605 wfun 5182 wfn 5183 wf 5184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-xp 4610 df-rel 4611 df-cnv 4612 df-dm 4614 df-rn 4615 df-fun 5190 df-fn 5191 df-f 5192 |
This theorem is referenced by: elpm2g 6631 casef 7053 |
Copyright terms: Public domain | W3C validator |