ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funssxp Unicode version

Theorem funssxp 5423
Description: Two ways of specifying a partial function from  A to  B. (Contributed by NM, 13-Nov-2007.)
Assertion
Ref Expression
funssxp  |-  ( ( Fun  F  /\  F  C_  ( A  X.  B
) )  <->  ( F : dom  F --> B  /\  dom  F  C_  A )
)

Proof of Theorem funssxp
StepHypRef Expression
1 funfn 5284 . . . . . 6  |-  ( Fun 
F  <->  F  Fn  dom  F )
21biimpi 120 . . . . 5  |-  ( Fun 
F  ->  F  Fn  dom  F )
3 rnss 4892 . . . . . 6  |-  ( F 
C_  ( A  X.  B )  ->  ran  F 
C_  ran  ( A  X.  B ) )
4 rnxpss 5097 . . . . . 6  |-  ran  ( A  X.  B )  C_  B
53, 4sstrdi 3191 . . . . 5  |-  ( F 
C_  ( A  X.  B )  ->  ran  F 
C_  B )
62, 5anim12i 338 . . . 4  |-  ( ( Fun  F  /\  F  C_  ( A  X.  B
) )  ->  ( F  Fn  dom  F  /\  ran  F  C_  B )
)
7 df-f 5258 . . . 4  |-  ( F : dom  F --> B  <->  ( F  Fn  dom  F  /\  ran  F 
C_  B ) )
86, 7sylibr 134 . . 3  |-  ( ( Fun  F  /\  F  C_  ( A  X.  B
) )  ->  F : dom  F --> B )
9 dmss 4861 . . . . 5  |-  ( F 
C_  ( A  X.  B )  ->  dom  F 
C_  dom  ( A  X.  B ) )
10 dmxpss 5096 . . . . 5  |-  dom  ( A  X.  B )  C_  A
119, 10sstrdi 3191 . . . 4  |-  ( F 
C_  ( A  X.  B )  ->  dom  F 
C_  A )
1211adantl 277 . . 3  |-  ( ( Fun  F  /\  F  C_  ( A  X.  B
) )  ->  dom  F 
C_  A )
138, 12jca 306 . 2  |-  ( ( Fun  F  /\  F  C_  ( A  X.  B
) )  ->  ( F : dom  F --> B  /\  dom  F  C_  A )
)
14 ffun 5406 . . . 4  |-  ( F : dom  F --> B  ->  Fun  F )
1514adantr 276 . . 3  |-  ( ( F : dom  F --> B  /\  dom  F  C_  A )  ->  Fun  F )
16 fssxp 5421 . . . 4  |-  ( F : dom  F --> B  ->  F  C_  ( dom  F  X.  B ) )
17 xpss1 4769 . . . 4  |-  ( dom 
F  C_  A  ->  ( dom  F  X.  B
)  C_  ( A  X.  B ) )
1816, 17sylan9ss 3192 . . 3  |-  ( ( F : dom  F --> B  /\  dom  F  C_  A )  ->  F  C_  ( A  X.  B
) )
1915, 18jca 306 . 2  |-  ( ( F : dom  F --> B  /\  dom  F  C_  A )  ->  ( Fun  F  /\  F  C_  ( A  X.  B
) ) )
2013, 19impbii 126 1  |-  ( ( Fun  F  /\  F  C_  ( A  X.  B
) )  <->  ( F : dom  F --> B  /\  dom  F  C_  A )
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    C_ wss 3153    X. cxp 4657   dom cdm 4659   ran crn 4660   Fun wfun 5248    Fn wfn 5249   -->wf 5250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-xp 4665  df-rel 4666  df-cnv 4667  df-dm 4669  df-rn 4670  df-fun 5256  df-fn 5257  df-f 5258
This theorem is referenced by:  elpm2g  6719  casef  7147
  Copyright terms: Public domain W3C validator