| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > sstrdi | Unicode version | ||
| Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| sstrdi.1 | 
 | 
| sstrdi.2 | 
 | 
| Ref | Expression | 
|---|---|
| sstrdi | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | sstrdi.1 | 
. 2
 | |
| 2 | sstrdi.2 | 
. . 3
 | |
| 3 | 2 | a1i 9 | 
. 2
 | 
| 4 | 1, 3 | sstrd 3193 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 | 
| This theorem is referenced by: difss2 3291 sstpr 3787 rintm 4009 eqbrrdva 4836 dmxpss2 5102 rnxpss2 5103 ssxpbm 5105 ssxp1 5106 ssxp2 5107 relfld 5198 funssxp 5427 dff2 5706 fliftf 5846 1stcof 6221 2ndcof 6222 tfrlemibfn 6386 tfr1onlembfn 6402 tfrcllemssrecs 6410 tfrcllembfn 6415 sucinc2 6504 peano5nnnn 7959 peano5nni 8993 suprzclex 9424 ioodisj 10068 fzssnn 10143 fzossnn0 10251 elfzom1elp1fzo 10278 frecuzrdgtcl 10504 frecuzrdgdomlem 10509 frecuzrdgfunlem 10511 zfz1iso 10933 seq3coll 10934 summodclem2a 11546 summodclem2 11547 zsumdc 11549 fsumsersdc 11560 fsum3cvg3 11561 prodmodclem2a 11741 prodmodclem2 11742 zproddc 11744 4sqlem11 12570 exmidunben 12643 nninfdclemp1 12667 strsetsid 12711 reldvdsrsrg 13648 lmss 14482 dvbssntrcntop 14920 dvcjbr 14944 reeff1olem 15007 peano5set 15586 | 
| Copyright terms: Public domain | W3C validator |