| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstrdi | Unicode version | ||
| Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| sstrdi.1 |
|
| sstrdi.2 |
|
| Ref | Expression |
|---|---|
| sstrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstrdi.1 |
. 2
| |
| 2 | sstrdi.2 |
. . 3
| |
| 3 | 2 | a1i 9 |
. 2
|
| 4 | 1, 3 | sstrd 3203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: difss2 3301 sstpr 3798 rintm 4020 eqbrrdva 4849 dmxpss2 5116 rnxpss2 5117 ssxpbm 5119 ssxp1 5120 ssxp2 5121 relfld 5212 funssxp 5447 dff2 5726 fliftf 5870 1stcof 6251 2ndcof 6252 tfrlemibfn 6416 tfr1onlembfn 6432 tfrcllemssrecs 6440 tfrcllembfn 6445 sucinc2 6534 peano5nnnn 8007 peano5nni 9041 suprzclex 9473 ioodisj 10117 fzssnn 10192 fzossnn0 10301 elfzom1elp1fzo 10333 frecuzrdgtcl 10559 frecuzrdgdomlem 10564 frecuzrdgfunlem 10566 zfz1iso 10988 seq3coll 10989 summodclem2a 11725 summodclem2 11726 zsumdc 11728 fsumsersdc 11739 fsum3cvg3 11740 prodmodclem2a 11920 prodmodclem2 11921 zproddc 11923 4sqlem11 12757 exmidunben 12830 nninfdclemp1 12854 strsetsid 12898 reldvdsrsrg 13887 lmss 14751 dvbssntrcntop 15189 dvcjbr 15213 reeff1olem 15276 peano5set 15913 |
| Copyright terms: Public domain | W3C validator |