| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstrdi | Unicode version | ||
| Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| sstrdi.1 |
|
| sstrdi.2 |
|
| Ref | Expression |
|---|---|
| sstrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstrdi.1 |
. 2
| |
| 2 | sstrdi.2 |
. . 3
| |
| 3 | 2 | a1i 9 |
. 2
|
| 4 | 1, 3 | sstrd 3203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: difss2 3301 sstpr 3798 rintm 4020 eqbrrdva 4848 dmxpss2 5115 rnxpss2 5116 ssxpbm 5118 ssxp1 5119 ssxp2 5120 relfld 5211 funssxp 5445 dff2 5724 fliftf 5868 1stcof 6249 2ndcof 6250 tfrlemibfn 6414 tfr1onlembfn 6430 tfrcllemssrecs 6438 tfrcllembfn 6443 sucinc2 6532 peano5nnnn 8005 peano5nni 9039 suprzclex 9471 ioodisj 10115 fzssnn 10190 fzossnn0 10299 elfzom1elp1fzo 10331 frecuzrdgtcl 10557 frecuzrdgdomlem 10562 frecuzrdgfunlem 10564 zfz1iso 10986 seq3coll 10987 summodclem2a 11692 summodclem2 11693 zsumdc 11695 fsumsersdc 11706 fsum3cvg3 11707 prodmodclem2a 11887 prodmodclem2 11888 zproddc 11890 4sqlem11 12724 exmidunben 12797 nninfdclemp1 12821 strsetsid 12865 reldvdsrsrg 13854 lmss 14718 dvbssntrcntop 15156 dvcjbr 15180 reeff1olem 15243 peano5set 15876 |
| Copyright terms: Public domain | W3C validator |