ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sstrdi Unicode version

Theorem sstrdi 3205
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
sstrdi.1  |-  ( ph  ->  A  C_  B )
sstrdi.2  |-  B  C_  C
Assertion
Ref Expression
sstrdi  |-  ( ph  ->  A  C_  C )

Proof of Theorem sstrdi
StepHypRef Expression
1 sstrdi.1 . 2  |-  ( ph  ->  A  C_  B )
2 sstrdi.2 . . 3  |-  B  C_  C
32a1i 9 . 2  |-  ( ph  ->  B  C_  C )
41, 3sstrd 3203 1  |-  ( ph  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-in 3172  df-ss 3179
This theorem is referenced by:  difss2  3301  sstpr  3798  rintm  4020  eqbrrdva  4849  dmxpss2  5116  rnxpss2  5117  ssxpbm  5119  ssxp1  5120  ssxp2  5121  relfld  5212  funssxp  5447  dff2  5726  fliftf  5870  1stcof  6251  2ndcof  6252  tfrlemibfn  6416  tfr1onlembfn  6432  tfrcllemssrecs  6440  tfrcllembfn  6445  sucinc2  6534  peano5nnnn  8007  peano5nni  9041  suprzclex  9473  ioodisj  10117  fzssnn  10192  fzossnn0  10301  elfzom1elp1fzo  10333  frecuzrdgtcl  10559  frecuzrdgdomlem  10564  frecuzrdgfunlem  10566  zfz1iso  10988  seq3coll  10989  summodclem2a  11725  summodclem2  11726  zsumdc  11728  fsumsersdc  11739  fsum3cvg3  11740  prodmodclem2a  11920  prodmodclem2  11921  zproddc  11923  4sqlem11  12757  exmidunben  12830  nninfdclemp1  12854  strsetsid  12898  reldvdsrsrg  13887  lmss  14751  dvbssntrcntop  15189  dvcjbr  15213  reeff1olem  15276  peano5set  15913
  Copyright terms: Public domain W3C validator