| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstrdi | Unicode version | ||
| Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| sstrdi.1 |
|
| sstrdi.2 |
|
| Ref | Expression |
|---|---|
| sstrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstrdi.1 |
. 2
| |
| 2 | sstrdi.2 |
. . 3
| |
| 3 | 2 | a1i 9 |
. 2
|
| 4 | 1, 3 | sstrd 3211 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 |
| This theorem is referenced by: difss2 3309 sstpr 3811 rintm 4034 eqbrrdva 4866 dmxpss2 5134 rnxpss2 5135 ssxpbm 5137 ssxp1 5138 ssxp2 5139 relfld 5230 funssxp 5465 dff2 5747 fliftf 5891 1stcof 6272 2ndcof 6273 tfrlemibfn 6437 tfr1onlembfn 6453 tfrcllemssrecs 6461 tfrcllembfn 6466 sucinc2 6555 peano5nnnn 8040 peano5nni 9074 suprzclex 9506 ioodisj 10150 fzssnn 10225 fzossnn0 10334 elfzom1elp1fzo 10368 frecuzrdgtcl 10594 frecuzrdgdomlem 10599 frecuzrdgfunlem 10601 zfz1iso 11023 seq3coll 11024 summodclem2a 11807 summodclem2 11808 zsumdc 11810 fsumsersdc 11821 fsum3cvg3 11822 prodmodclem2a 12002 prodmodclem2 12003 zproddc 12005 4sqlem11 12839 exmidunben 12912 nninfdclemp1 12936 strsetsid 12980 reldvdsrsrg 13969 lmss 14833 dvbssntrcntop 15271 dvcjbr 15295 reeff1olem 15358 peano5set 16075 |
| Copyright terms: Public domain | W3C validator |