| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstrdi | Unicode version | ||
| Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| sstrdi.1 |
|
| sstrdi.2 |
|
| Ref | Expression |
|---|---|
| sstrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstrdi.1 |
. 2
| |
| 2 | sstrdi.2 |
. . 3
| |
| 3 | 2 | a1i 9 |
. 2
|
| 4 | 1, 3 | sstrd 3234 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: difss2 3332 sstpr 3835 rintm 4058 eqbrrdva 4892 dmxpss2 5161 rnxpss2 5162 ssxpbm 5164 ssxp1 5165 ssxp2 5166 relfld 5257 funssxp 5493 dff2 5779 fliftf 5923 1stcof 6309 2ndcof 6310 tfrlemibfn 6474 tfr1onlembfn 6490 tfrcllemssrecs 6498 tfrcllembfn 6503 sucinc2 6592 peano5nnnn 8079 peano5nni 9113 suprzclex 9545 ioodisj 10189 fzssnn 10264 fzossnn0 10373 elfzom1elp1fzo 10408 frecuzrdgtcl 10634 frecuzrdgdomlem 10639 frecuzrdgfunlem 10641 zfz1iso 11063 seq3coll 11064 summodclem2a 11892 summodclem2 11893 zsumdc 11895 fsumsersdc 11906 fsum3cvg3 11907 prodmodclem2a 12087 prodmodclem2 12088 zproddc 12090 4sqlem11 12924 exmidunben 12997 nninfdclemp1 13021 strsetsid 13065 lmss 14920 dvbssntrcntop 15358 dvcjbr 15382 reeff1olem 15445 peano5set 16303 |
| Copyright terms: Public domain | W3C validator |