| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > sstrdi | Unicode version | ||
| Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| sstrdi.1 |
|
| sstrdi.2 |
|
| Ref | Expression |
|---|---|
| sstrdi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sstrdi.1 |
. 2
| |
| 2 | sstrdi.2 |
. . 3
| |
| 3 | 2 | a1i 9 |
. 2
|
| 4 | 1, 3 | sstrd 3194 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: difss2 3292 sstpr 3788 rintm 4010 eqbrrdva 4837 dmxpss2 5103 rnxpss2 5104 ssxpbm 5106 ssxp1 5107 ssxp2 5108 relfld 5199 funssxp 5430 dff2 5709 fliftf 5849 1stcof 6230 2ndcof 6231 tfrlemibfn 6395 tfr1onlembfn 6411 tfrcllemssrecs 6419 tfrcllembfn 6424 sucinc2 6513 peano5nnnn 7976 peano5nni 9010 suprzclex 9441 ioodisj 10085 fzssnn 10160 fzossnn0 10268 elfzom1elp1fzo 10295 frecuzrdgtcl 10521 frecuzrdgdomlem 10526 frecuzrdgfunlem 10528 zfz1iso 10950 seq3coll 10951 summodclem2a 11563 summodclem2 11564 zsumdc 11566 fsumsersdc 11577 fsum3cvg3 11578 prodmodclem2a 11758 prodmodclem2 11759 zproddc 11761 4sqlem11 12595 exmidunben 12668 nninfdclemp1 12692 strsetsid 12736 reldvdsrsrg 13724 lmss 14566 dvbssntrcntop 15004 dvcjbr 15028 reeff1olem 15091 peano5set 15670 |
| Copyright terms: Public domain | W3C validator |