ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  sstrdi Unicode version

Theorem sstrdi 3182
Description: Subclass transitivity deduction. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
sstrdi.1  |-  ( ph  ->  A  C_  B )
sstrdi.2  |-  B  C_  C
Assertion
Ref Expression
sstrdi  |-  ( ph  ->  A  C_  C )

Proof of Theorem sstrdi
StepHypRef Expression
1 sstrdi.1 . 2  |-  ( ph  ->  A  C_  B )
2 sstrdi.2 . . 3  |-  B  C_  C
32a1i 9 . 2  |-  ( ph  ->  B  C_  C )
41, 3sstrd 3180 1  |-  ( ph  ->  A  C_  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    C_ wss 3144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-11 1517  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-in 3150  df-ss 3157
This theorem is referenced by:  difss2  3278  sstpr  3772  rintm  3994  eqbrrdva  4815  dmxpss2  5079  rnxpss2  5080  ssxpbm  5082  ssxp1  5083  ssxp2  5084  relfld  5175  funssxp  5404  dff2  5681  fliftf  5821  1stcof  6188  2ndcof  6189  tfrlemibfn  6353  tfr1onlembfn  6369  tfrcllemssrecs  6377  tfrcllembfn  6382  sucinc2  6471  peano5nnnn  7921  peano5nni  8952  suprzclex  9381  ioodisj  10023  fzssnn  10098  fzossnn0  10205  elfzom1elp1fzo  10232  frecuzrdgtcl  10443  frecuzrdgdomlem  10448  frecuzrdgfunlem  10450  zfz1iso  10853  seq3coll  10854  summodclem2a  11421  summodclem2  11422  zsumdc  11424  fsumsersdc  11435  fsum3cvg3  11436  prodmodclem2a  11616  prodmodclem2  11617  zproddc  11619  4sqlem11  12433  exmidunben  12477  nninfdclemp1  12501  strsetsid  12545  reldvdsrsrg  13442  lmss  14206  dvbssntrcntop  14613  dvcjbr  14632  reeff1olem  14652  peano5set  15153
  Copyright terms: Public domain W3C validator