ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rplpwr Unicode version

Theorem rplpwr 12194
Description: If  A and  B are relatively prime, then so are  A ^ N and  B. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
rplpwr  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  N  e.  NN )  ->  (
( A  gcd  B
)  =  1  -> 
( ( A ^ N )  gcd  B
)  =  1 ) )

Proof of Theorem rplpwr
Dummy variables  n  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5930 . . . . . . . 8  |-  ( k  =  1  ->  ( A ^ k )  =  ( A ^ 1 ) )
21oveq1d 5937 . . . . . . 7  |-  ( k  =  1  ->  (
( A ^ k
)  gcd  B )  =  ( ( A ^ 1 )  gcd 
B ) )
32eqeq1d 2205 . . . . . 6  |-  ( k  =  1  ->  (
( ( A ^
k )  gcd  B
)  =  1  <->  (
( A ^ 1 )  gcd  B )  =  1 ) )
43imbi2d 230 . . . . 5  |-  ( k  =  1  ->  (
( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( A ^ k
)  gcd  B )  =  1 )  <->  ( (
( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  ( ( A ^ 1 )  gcd 
B )  =  1 ) ) )
5 oveq2 5930 . . . . . . . 8  |-  ( k  =  n  ->  ( A ^ k )  =  ( A ^ n
) )
65oveq1d 5937 . . . . . . 7  |-  ( k  =  n  ->  (
( A ^ k
)  gcd  B )  =  ( ( A ^ n )  gcd 
B ) )
76eqeq1d 2205 . . . . . 6  |-  ( k  =  n  ->  (
( ( A ^
k )  gcd  B
)  =  1  <->  (
( A ^ n
)  gcd  B )  =  1 ) )
87imbi2d 230 . . . . 5  |-  ( k  =  n  ->  (
( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( A ^ k
)  gcd  B )  =  1 )  <->  ( (
( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  ( ( A ^ n )  gcd 
B )  =  1 ) ) )
9 oveq2 5930 . . . . . . . 8  |-  ( k  =  ( n  + 
1 )  ->  ( A ^ k )  =  ( A ^ (
n  +  1 ) ) )
109oveq1d 5937 . . . . . . 7  |-  ( k  =  ( n  + 
1 )  ->  (
( A ^ k
)  gcd  B )  =  ( ( A ^ ( n  + 
1 ) )  gcd 
B ) )
1110eqeq1d 2205 . . . . . 6  |-  ( k  =  ( n  + 
1 )  ->  (
( ( A ^
k )  gcd  B
)  =  1  <->  (
( A ^ (
n  +  1 ) )  gcd  B )  =  1 ) )
1211imbi2d 230 . . . . 5  |-  ( k  =  ( n  + 
1 )  ->  (
( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( A ^ k
)  gcd  B )  =  1 )  <->  ( (
( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  ( ( A ^ ( n  + 
1 ) )  gcd 
B )  =  1 ) ) )
13 oveq2 5930 . . . . . . . 8  |-  ( k  =  N  ->  ( A ^ k )  =  ( A ^ N
) )
1413oveq1d 5937 . . . . . . 7  |-  ( k  =  N  ->  (
( A ^ k
)  gcd  B )  =  ( ( A ^ N )  gcd 
B ) )
1514eqeq1d 2205 . . . . . 6  |-  ( k  =  N  ->  (
( ( A ^
k )  gcd  B
)  =  1  <->  (
( A ^ N
)  gcd  B )  =  1 ) )
1615imbi2d 230 . . . . 5  |-  ( k  =  N  ->  (
( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( A ^ k
)  gcd  B )  =  1 )  <->  ( (
( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  ( ( A ^ N )  gcd 
B )  =  1 ) ) )
17 nncn 8998 . . . . . . . . . 10  |-  ( A  e.  NN  ->  A  e.  CC )
1817exp1d 10760 . . . . . . . . 9  |-  ( A  e.  NN  ->  ( A ^ 1 )  =  A )
1918oveq1d 5937 . . . . . . . 8  |-  ( A  e.  NN  ->  (
( A ^ 1 )  gcd  B )  =  ( A  gcd  B ) )
2019adantr 276 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A ^
1 )  gcd  B
)  =  ( A  gcd  B ) )
2120eqeq1d 2205 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( ( A ^ 1 )  gcd 
B )  =  1  <-> 
( A  gcd  B
)  =  1 ) )
2221biimpar 297 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  ( ( A ^ 1 )  gcd 
B )  =  1 )
23 df-3an 982 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  <->  ( ( A  e.  NN  /\  B  e.  NN )  /\  n  e.  NN ) )
24 simpl1 1002 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  A  e.  NN )
2524nncnd 9004 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  A  e.  CC )
26 simpl3 1004 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  n  e.  NN )
2726nnnn0d 9302 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  n  e.  NN0 )
2825, 27expp1d 10766 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( A ^
( n  +  1 ) )  =  ( ( A ^ n
)  x.  A ) )
29 simp1 999 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  A  e.  NN )
30 nnnn0 9256 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  NN  ->  n  e.  NN0 )
31303ad2ant3 1022 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  n  e.  NN0 )
3229, 31nnexpcld 10787 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  ( A ^ n )  e.  NN )
3332nnzd 9447 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  ( A ^ n )  e.  ZZ )
3433adantr 276 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( A ^
n )  e.  ZZ )
3534zcnd 9449 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( A ^
n )  e.  CC )
3635, 25mulcomd 8048 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( ( A ^ n )  x.  A )  =  ( A  x.  ( A ^ n ) ) )
3728, 36eqtrd 2229 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( A ^
( n  +  1 ) )  =  ( A  x.  ( A ^ n ) ) )
3837oveq2d 5938 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( B  gcd  ( A ^ ( n  +  1 ) ) )  =  ( B  gcd  ( A  x.  ( A ^ n ) ) ) )
39 simpl2 1003 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  B  e.  NN )
4032adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( A ^
n )  e.  NN )
41 nnz 9345 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  NN  ->  A  e.  ZZ )
42413ad2ant1 1020 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  A  e.  ZZ )
43 nnz 9345 . . . . . . . . . . . . . . . . . 18  |-  ( B  e.  NN  ->  B  e.  ZZ )
44433ad2ant2 1021 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  B  e.  ZZ )
45 gcdcom 12140 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  =  ( B  gcd  A ) )
4642, 44, 45syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  ( A  gcd  B )  =  ( B  gcd  A
) )
4746eqeq1d 2205 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  (
( A  gcd  B
)  =  1  <->  ( B  gcd  A )  =  1 ) )
4847biimpa 296 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( B  gcd  A )  =  1 )
49 rpmulgcd 12193 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  NN  /\  A  e.  NN  /\  ( A ^ n )  e.  NN )  /\  ( B  gcd  A )  =  1 )  -> 
( B  gcd  ( A  x.  ( A ^ n ) ) )  =  ( B  gcd  ( A ^
n ) ) )
5039, 24, 40, 48, 49syl31anc 1252 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( B  gcd  ( A  x.  ( A ^ n ) ) )  =  ( B  gcd  ( A ^
n ) ) )
5138, 50eqtrd 2229 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( B  gcd  ( A ^ ( n  +  1 ) ) )  =  ( B  gcd  ( A ^
n ) ) )
52 peano2nn 9002 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN  ->  (
n  +  1 )  e.  NN )
53523ad2ant3 1022 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  (
n  +  1 )  e.  NN )
5453adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( n  + 
1 )  e.  NN )
5554nnnn0d 9302 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( n  + 
1 )  e.  NN0 )
5624, 55nnexpcld 10787 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( A ^
( n  +  1 ) )  e.  NN )
5756nnzd 9447 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( A ^
( n  +  1 ) )  e.  ZZ )
5844adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  B  e.  ZZ )
59 gcdcom 12140 . . . . . . . . . . . . 13  |-  ( ( ( A ^ (
n  +  1 ) )  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A ^
( n  +  1 ) )  gcd  B
)  =  ( B  gcd  ( A ^
( n  +  1 ) ) ) )
6057, 58, 59syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( ( A ^ ( n  + 
1 ) )  gcd 
B )  =  ( B  gcd  ( A ^ ( n  + 
1 ) ) ) )
61 gcdcom 12140 . . . . . . . . . . . . 13  |-  ( ( ( A ^ n
)  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A ^
n )  gcd  B
)  =  ( B  gcd  ( A ^
n ) ) )
6234, 58, 61syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( ( A ^ n )  gcd 
B )  =  ( B  gcd  ( A ^ n ) ) )
6351, 60, 623eqtr4d 2239 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( ( A ^ ( n  + 
1 ) )  gcd 
B )  =  ( ( A ^ n
)  gcd  B )
)
6463eqeq1d 2205 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( ( ( A ^ ( n  +  1 ) )  gcd  B )  =  1  <->  ( ( A ^ n )  gcd 
B )  =  1 ) )
6564biimprd 158 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( ( ( A ^ n )  gcd  B )  =  1  ->  ( ( A ^ ( n  + 
1 ) )  gcd 
B )  =  1 ) )
6623, 65sylanbr 285 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  n  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( ( A ^
n )  gcd  B
)  =  1  -> 
( ( A ^
( n  +  1 ) )  gcd  B
)  =  1 ) )
6766an32s 568 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  /\  n  e.  NN )  ->  (
( ( A ^
n )  gcd  B
)  =  1  -> 
( ( A ^
( n  +  1 ) )  gcd  B
)  =  1 ) )
6867expcom 116 . . . . . 6  |-  ( n  e.  NN  ->  (
( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( ( A ^
n )  gcd  B
)  =  1  -> 
( ( A ^
( n  +  1 ) )  gcd  B
)  =  1 ) ) )
6968a2d 26 . . . . 5  |-  ( n  e.  NN  ->  (
( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( A ^ n
)  gcd  B )  =  1 )  -> 
( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( A ^ (
n  +  1 ) )  gcd  B )  =  1 ) ) )
704, 8, 12, 16, 22, 69nnind 9006 . . . 4  |-  ( N  e.  NN  ->  (
( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( A ^ N
)  gcd  B )  =  1 ) )
7170expd 258 . . 3  |-  ( N  e.  NN  ->  (
( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B )  =  1  ->  ( ( A ^ N )  gcd 
B )  =  1 ) ) )
7271com12 30 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( N  e.  NN  ->  ( ( A  gcd  B )  =  1  -> 
( ( A ^ N )  gcd  B
)  =  1 ) ) )
73723impia 1202 1  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  N  e.  NN )  ->  (
( A  gcd  B
)  =  1  -> 
( ( A ^ N )  gcd  B
)  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167  (class class class)co 5922   1c1 7880    + caddc 7882    x. cmul 7884   NNcn 8990   NN0cn0 9249   ZZcz 9326   ^cexp 10630    gcd cgcd 12120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997  ax-arch 7998  ax-caucvg 7999
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-sup 7050  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-3 9050  df-4 9051  df-n0 9250  df-z 9327  df-uz 9602  df-q 9694  df-rp 9729  df-fz 10084  df-fzo 10218  df-fl 10360  df-mod 10415  df-seqfrec 10540  df-exp 10631  df-cj 11007  df-re 11008  df-im 11009  df-rsqrt 11163  df-abs 11164  df-dvds 11953  df-gcd 12121
This theorem is referenced by:  rppwr  12195  logbgcd1irr  15203  logbgcd1irraplemexp  15204  lgsne0  15279  2sqlem8  15364
  Copyright terms: Public domain W3C validator