ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rplpwr Unicode version

Theorem rplpwr 11561
Description: If  A and  B are relatively prime, then so are  A ^ N and  B. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
rplpwr  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  N  e.  NN )  ->  (
( A  gcd  B
)  =  1  -> 
( ( A ^ N )  gcd  B
)  =  1 ) )

Proof of Theorem rplpwr
Dummy variables  n  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5736 . . . . . . . 8  |-  ( k  =  1  ->  ( A ^ k )  =  ( A ^ 1 ) )
21oveq1d 5743 . . . . . . 7  |-  ( k  =  1  ->  (
( A ^ k
)  gcd  B )  =  ( ( A ^ 1 )  gcd 
B ) )
32eqeq1d 2123 . . . . . 6  |-  ( k  =  1  ->  (
( ( A ^
k )  gcd  B
)  =  1  <->  (
( A ^ 1 )  gcd  B )  =  1 ) )
43imbi2d 229 . . . . 5  |-  ( k  =  1  ->  (
( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( A ^ k
)  gcd  B )  =  1 )  <->  ( (
( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  ( ( A ^ 1 )  gcd 
B )  =  1 ) ) )
5 oveq2 5736 . . . . . . . 8  |-  ( k  =  n  ->  ( A ^ k )  =  ( A ^ n
) )
65oveq1d 5743 . . . . . . 7  |-  ( k  =  n  ->  (
( A ^ k
)  gcd  B )  =  ( ( A ^ n )  gcd 
B ) )
76eqeq1d 2123 . . . . . 6  |-  ( k  =  n  ->  (
( ( A ^
k )  gcd  B
)  =  1  <->  (
( A ^ n
)  gcd  B )  =  1 ) )
87imbi2d 229 . . . . 5  |-  ( k  =  n  ->  (
( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( A ^ k
)  gcd  B )  =  1 )  <->  ( (
( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  ( ( A ^ n )  gcd 
B )  =  1 ) ) )
9 oveq2 5736 . . . . . . . 8  |-  ( k  =  ( n  + 
1 )  ->  ( A ^ k )  =  ( A ^ (
n  +  1 ) ) )
109oveq1d 5743 . . . . . . 7  |-  ( k  =  ( n  + 
1 )  ->  (
( A ^ k
)  gcd  B )  =  ( ( A ^ ( n  + 
1 ) )  gcd 
B ) )
1110eqeq1d 2123 . . . . . 6  |-  ( k  =  ( n  + 
1 )  ->  (
( ( A ^
k )  gcd  B
)  =  1  <->  (
( A ^ (
n  +  1 ) )  gcd  B )  =  1 ) )
1211imbi2d 229 . . . . 5  |-  ( k  =  ( n  + 
1 )  ->  (
( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( A ^ k
)  gcd  B )  =  1 )  <->  ( (
( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  ( ( A ^ ( n  + 
1 ) )  gcd 
B )  =  1 ) ) )
13 oveq2 5736 . . . . . . . 8  |-  ( k  =  N  ->  ( A ^ k )  =  ( A ^ N
) )
1413oveq1d 5743 . . . . . . 7  |-  ( k  =  N  ->  (
( A ^ k
)  gcd  B )  =  ( ( A ^ N )  gcd 
B ) )
1514eqeq1d 2123 . . . . . 6  |-  ( k  =  N  ->  (
( ( A ^
k )  gcd  B
)  =  1  <->  (
( A ^ N
)  gcd  B )  =  1 ) )
1615imbi2d 229 . . . . 5  |-  ( k  =  N  ->  (
( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( A ^ k
)  gcd  B )  =  1 )  <->  ( (
( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  ( ( A ^ N )  gcd 
B )  =  1 ) ) )
17 nncn 8638 . . . . . . . . . 10  |-  ( A  e.  NN  ->  A  e.  CC )
1817exp1d 10312 . . . . . . . . 9  |-  ( A  e.  NN  ->  ( A ^ 1 )  =  A )
1918oveq1d 5743 . . . . . . . 8  |-  ( A  e.  NN  ->  (
( A ^ 1 )  gcd  B )  =  ( A  gcd  B ) )
2019adantr 272 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A ^
1 )  gcd  B
)  =  ( A  gcd  B ) )
2120eqeq1d 2123 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( ( A ^ 1 )  gcd 
B )  =  1  <-> 
( A  gcd  B
)  =  1 ) )
2221biimpar 293 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  ( ( A ^ 1 )  gcd 
B )  =  1 )
23 df-3an 947 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  <->  ( ( A  e.  NN  /\  B  e.  NN )  /\  n  e.  NN ) )
24 simpl1 967 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  A  e.  NN )
2524nncnd 8644 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  A  e.  CC )
26 simpl3 969 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  n  e.  NN )
2726nnnn0d 8934 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  n  e.  NN0 )
2825, 27expp1d 10318 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( A ^
( n  +  1 ) )  =  ( ( A ^ n
)  x.  A ) )
29 simp1 964 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  A  e.  NN )
30 nnnn0 8888 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  NN  ->  n  e.  NN0 )
31303ad2ant3 987 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  n  e.  NN0 )
3229, 31nnexpcld 10339 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  ( A ^ n )  e.  NN )
3332nnzd 9076 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  ( A ^ n )  e.  ZZ )
3433adantr 272 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( A ^
n )  e.  ZZ )
3534zcnd 9078 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( A ^
n )  e.  CC )
3635, 25mulcomd 7711 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( ( A ^ n )  x.  A )  =  ( A  x.  ( A ^ n ) ) )
3728, 36eqtrd 2147 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( A ^
( n  +  1 ) )  =  ( A  x.  ( A ^ n ) ) )
3837oveq2d 5744 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( B  gcd  ( A ^ ( n  +  1 ) ) )  =  ( B  gcd  ( A  x.  ( A ^ n ) ) ) )
39 simpl2 968 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  B  e.  NN )
4032adantr 272 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( A ^
n )  e.  NN )
41 nnz 8977 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  NN  ->  A  e.  ZZ )
42413ad2ant1 985 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  A  e.  ZZ )
43 nnz 8977 . . . . . . . . . . . . . . . . . 18  |-  ( B  e.  NN  ->  B  e.  ZZ )
44433ad2ant2 986 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  B  e.  ZZ )
45 gcdcom 11510 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  =  ( B  gcd  A ) )
4642, 44, 45syl2anc 406 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  ( A  gcd  B )  =  ( B  gcd  A
) )
4746eqeq1d 2123 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  (
( A  gcd  B
)  =  1  <->  ( B  gcd  A )  =  1 ) )
4847biimpa 292 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( B  gcd  A )  =  1 )
49 rpmulgcd 11560 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  NN  /\  A  e.  NN  /\  ( A ^ n )  e.  NN )  /\  ( B  gcd  A )  =  1 )  -> 
( B  gcd  ( A  x.  ( A ^ n ) ) )  =  ( B  gcd  ( A ^
n ) ) )
5039, 24, 40, 48, 49syl31anc 1202 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( B  gcd  ( A  x.  ( A ^ n ) ) )  =  ( B  gcd  ( A ^
n ) ) )
5138, 50eqtrd 2147 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( B  gcd  ( A ^ ( n  +  1 ) ) )  =  ( B  gcd  ( A ^
n ) ) )
52 peano2nn 8642 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN  ->  (
n  +  1 )  e.  NN )
53523ad2ant3 987 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  (
n  +  1 )  e.  NN )
5453adantr 272 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( n  + 
1 )  e.  NN )
5554nnnn0d 8934 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( n  + 
1 )  e.  NN0 )
5624, 55nnexpcld 10339 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( A ^
( n  +  1 ) )  e.  NN )
5756nnzd 9076 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( A ^
( n  +  1 ) )  e.  ZZ )
5844adantr 272 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  B  e.  ZZ )
59 gcdcom 11510 . . . . . . . . . . . . 13  |-  ( ( ( A ^ (
n  +  1 ) )  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A ^
( n  +  1 ) )  gcd  B
)  =  ( B  gcd  ( A ^
( n  +  1 ) ) ) )
6057, 58, 59syl2anc 406 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( ( A ^ ( n  + 
1 ) )  gcd 
B )  =  ( B  gcd  ( A ^ ( n  + 
1 ) ) ) )
61 gcdcom 11510 . . . . . . . . . . . . 13  |-  ( ( ( A ^ n
)  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A ^
n )  gcd  B
)  =  ( B  gcd  ( A ^
n ) ) )
6234, 58, 61syl2anc 406 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( ( A ^ n )  gcd 
B )  =  ( B  gcd  ( A ^ n ) ) )
6351, 60, 623eqtr4d 2157 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( ( A ^ ( n  + 
1 ) )  gcd 
B )  =  ( ( A ^ n
)  gcd  B )
)
6463eqeq1d 2123 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( ( ( A ^ ( n  +  1 ) )  gcd  B )  =  1  <->  ( ( A ^ n )  gcd 
B )  =  1 ) )
6564biimprd 157 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( ( ( A ^ n )  gcd  B )  =  1  ->  ( ( A ^ ( n  + 
1 ) )  gcd 
B )  =  1 ) )
6623, 65sylanbr 281 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  n  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( ( A ^
n )  gcd  B
)  =  1  -> 
( ( A ^
( n  +  1 ) )  gcd  B
)  =  1 ) )
6766an32s 540 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  /\  n  e.  NN )  ->  (
( ( A ^
n )  gcd  B
)  =  1  -> 
( ( A ^
( n  +  1 ) )  gcd  B
)  =  1 ) )
6867expcom 115 . . . . . 6  |-  ( n  e.  NN  ->  (
( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( ( A ^
n )  gcd  B
)  =  1  -> 
( ( A ^
( n  +  1 ) )  gcd  B
)  =  1 ) ) )
6968a2d 26 . . . . 5  |-  ( n  e.  NN  ->  (
( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( A ^ n
)  gcd  B )  =  1 )  -> 
( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( A ^ (
n  +  1 ) )  gcd  B )  =  1 ) ) )
704, 8, 12, 16, 22, 69nnind 8646 . . . 4  |-  ( N  e.  NN  ->  (
( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( A ^ N
)  gcd  B )  =  1 ) )
7170expd 256 . . 3  |-  ( N  e.  NN  ->  (
( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B )  =  1  ->  ( ( A ^ N )  gcd 
B )  =  1 ) ) )
7271com12 30 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( N  e.  NN  ->  ( ( A  gcd  B )  =  1  -> 
( ( A ^ N )  gcd  B
)  =  1 ) ) )
73723impia 1161 1  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  N  e.  NN )  ->  (
( A  gcd  B
)  =  1  -> 
( ( A ^ N )  gcd  B
)  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 945    = wceq 1314    e. wcel 1463  (class class class)co 5728   1c1 7548    + caddc 7550    x. cmul 7552   NNcn 8630   NN0cn0 8881   ZZcz 8958   ^cexp 10185    gcd cgcd 11483
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-coll 4003  ax-sep 4006  ax-nul 4014  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-iinf 4462  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-mulrcl 7644  ax-addcom 7645  ax-mulcom 7646  ax-addass 7647  ax-mulass 7648  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-1rid 7652  ax-0id 7653  ax-rnegex 7654  ax-precex 7655  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-apti 7660  ax-pre-ltadd 7661  ax-pre-mulgt0 7662  ax-pre-mulext 7663  ax-arch 7664  ax-caucvg 7665
This theorem depends on definitions:  df-bi 116  df-stab 799  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rmo 2398  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-nul 3330  df-if 3441  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-tr 3987  df-id 4175  df-po 4178  df-iso 4179  df-iord 4248  df-on 4250  df-ilim 4251  df-suc 4253  df-iom 4465  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-f1 5086  df-fo 5087  df-f1o 5088  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-recs 6156  df-frec 6242  df-sup 6823  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-reap 8255  df-ap 8262  df-div 8346  df-inn 8631  df-2 8689  df-3 8690  df-4 8691  df-n0 8882  df-z 8959  df-uz 9229  df-q 9314  df-rp 9344  df-fz 9684  df-fzo 9813  df-fl 9936  df-mod 9989  df-seqfrec 10112  df-exp 10186  df-cj 10507  df-re 10508  df-im 10509  df-rsqrt 10662  df-abs 10663  df-dvds 11342  df-gcd 11484
This theorem is referenced by:  rppwr  11562
  Copyright terms: Public domain W3C validator