ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rplpwr Unicode version

Theorem rplpwr 12011
Description: If  A and  B are relatively prime, then so are  A ^ N and  B. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
rplpwr  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  N  e.  NN )  ->  (
( A  gcd  B
)  =  1  -> 
( ( A ^ N )  gcd  B
)  =  1 ) )

Proof of Theorem rplpwr
Dummy variables  n  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5877 . . . . . . . 8  |-  ( k  =  1  ->  ( A ^ k )  =  ( A ^ 1 ) )
21oveq1d 5884 . . . . . . 7  |-  ( k  =  1  ->  (
( A ^ k
)  gcd  B )  =  ( ( A ^ 1 )  gcd 
B ) )
32eqeq1d 2186 . . . . . 6  |-  ( k  =  1  ->  (
( ( A ^
k )  gcd  B
)  =  1  <->  (
( A ^ 1 )  gcd  B )  =  1 ) )
43imbi2d 230 . . . . 5  |-  ( k  =  1  ->  (
( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( A ^ k
)  gcd  B )  =  1 )  <->  ( (
( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  ( ( A ^ 1 )  gcd 
B )  =  1 ) ) )
5 oveq2 5877 . . . . . . . 8  |-  ( k  =  n  ->  ( A ^ k )  =  ( A ^ n
) )
65oveq1d 5884 . . . . . . 7  |-  ( k  =  n  ->  (
( A ^ k
)  gcd  B )  =  ( ( A ^ n )  gcd 
B ) )
76eqeq1d 2186 . . . . . 6  |-  ( k  =  n  ->  (
( ( A ^
k )  gcd  B
)  =  1  <->  (
( A ^ n
)  gcd  B )  =  1 ) )
87imbi2d 230 . . . . 5  |-  ( k  =  n  ->  (
( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( A ^ k
)  gcd  B )  =  1 )  <->  ( (
( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  ( ( A ^ n )  gcd 
B )  =  1 ) ) )
9 oveq2 5877 . . . . . . . 8  |-  ( k  =  ( n  + 
1 )  ->  ( A ^ k )  =  ( A ^ (
n  +  1 ) ) )
109oveq1d 5884 . . . . . . 7  |-  ( k  =  ( n  + 
1 )  ->  (
( A ^ k
)  gcd  B )  =  ( ( A ^ ( n  + 
1 ) )  gcd 
B ) )
1110eqeq1d 2186 . . . . . 6  |-  ( k  =  ( n  + 
1 )  ->  (
( ( A ^
k )  gcd  B
)  =  1  <->  (
( A ^ (
n  +  1 ) )  gcd  B )  =  1 ) )
1211imbi2d 230 . . . . 5  |-  ( k  =  ( n  + 
1 )  ->  (
( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( A ^ k
)  gcd  B )  =  1 )  <->  ( (
( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  ( ( A ^ ( n  + 
1 ) )  gcd 
B )  =  1 ) ) )
13 oveq2 5877 . . . . . . . 8  |-  ( k  =  N  ->  ( A ^ k )  =  ( A ^ N
) )
1413oveq1d 5884 . . . . . . 7  |-  ( k  =  N  ->  (
( A ^ k
)  gcd  B )  =  ( ( A ^ N )  gcd 
B ) )
1514eqeq1d 2186 . . . . . 6  |-  ( k  =  N  ->  (
( ( A ^
k )  gcd  B
)  =  1  <->  (
( A ^ N
)  gcd  B )  =  1 ) )
1615imbi2d 230 . . . . 5  |-  ( k  =  N  ->  (
( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( A ^ k
)  gcd  B )  =  1 )  <->  ( (
( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  ( ( A ^ N )  gcd 
B )  =  1 ) ) )
17 nncn 8916 . . . . . . . . . 10  |-  ( A  e.  NN  ->  A  e.  CC )
1817exp1d 10634 . . . . . . . . 9  |-  ( A  e.  NN  ->  ( A ^ 1 )  =  A )
1918oveq1d 5884 . . . . . . . 8  |-  ( A  e.  NN  ->  (
( A ^ 1 )  gcd  B )  =  ( A  gcd  B ) )
2019adantr 276 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A ^
1 )  gcd  B
)  =  ( A  gcd  B ) )
2120eqeq1d 2186 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( ( A ^ 1 )  gcd 
B )  =  1  <-> 
( A  gcd  B
)  =  1 ) )
2221biimpar 297 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  ( ( A ^ 1 )  gcd 
B )  =  1 )
23 df-3an 980 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  <->  ( ( A  e.  NN  /\  B  e.  NN )  /\  n  e.  NN ) )
24 simpl1 1000 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  A  e.  NN )
2524nncnd 8922 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  A  e.  CC )
26 simpl3 1002 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  n  e.  NN )
2726nnnn0d 9218 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  n  e.  NN0 )
2825, 27expp1d 10640 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( A ^
( n  +  1 ) )  =  ( ( A ^ n
)  x.  A ) )
29 simp1 997 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  A  e.  NN )
30 nnnn0 9172 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  NN  ->  n  e.  NN0 )
31303ad2ant3 1020 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  n  e.  NN0 )
3229, 31nnexpcld 10661 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  ( A ^ n )  e.  NN )
3332nnzd 9363 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  ( A ^ n )  e.  ZZ )
3433adantr 276 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( A ^
n )  e.  ZZ )
3534zcnd 9365 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( A ^
n )  e.  CC )
3635, 25mulcomd 7969 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( ( A ^ n )  x.  A )  =  ( A  x.  ( A ^ n ) ) )
3728, 36eqtrd 2210 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( A ^
( n  +  1 ) )  =  ( A  x.  ( A ^ n ) ) )
3837oveq2d 5885 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( B  gcd  ( A ^ ( n  +  1 ) ) )  =  ( B  gcd  ( A  x.  ( A ^ n ) ) ) )
39 simpl2 1001 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  B  e.  NN )
4032adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( A ^
n )  e.  NN )
41 nnz 9261 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  NN  ->  A  e.  ZZ )
42413ad2ant1 1018 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  A  e.  ZZ )
43 nnz 9261 . . . . . . . . . . . . . . . . . 18  |-  ( B  e.  NN  ->  B  e.  ZZ )
44433ad2ant2 1019 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  B  e.  ZZ )
45 gcdcom 11957 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  =  ( B  gcd  A ) )
4642, 44, 45syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  ( A  gcd  B )  =  ( B  gcd  A
) )
4746eqeq1d 2186 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  (
( A  gcd  B
)  =  1  <->  ( B  gcd  A )  =  1 ) )
4847biimpa 296 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( B  gcd  A )  =  1 )
49 rpmulgcd 12010 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  NN  /\  A  e.  NN  /\  ( A ^ n )  e.  NN )  /\  ( B  gcd  A )  =  1 )  -> 
( B  gcd  ( A  x.  ( A ^ n ) ) )  =  ( B  gcd  ( A ^
n ) ) )
5039, 24, 40, 48, 49syl31anc 1241 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( B  gcd  ( A  x.  ( A ^ n ) ) )  =  ( B  gcd  ( A ^
n ) ) )
5138, 50eqtrd 2210 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( B  gcd  ( A ^ ( n  +  1 ) ) )  =  ( B  gcd  ( A ^
n ) ) )
52 peano2nn 8920 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN  ->  (
n  +  1 )  e.  NN )
53523ad2ant3 1020 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  (
n  +  1 )  e.  NN )
5453adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( n  + 
1 )  e.  NN )
5554nnnn0d 9218 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( n  + 
1 )  e.  NN0 )
5624, 55nnexpcld 10661 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( A ^
( n  +  1 ) )  e.  NN )
5756nnzd 9363 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( A ^
( n  +  1 ) )  e.  ZZ )
5844adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  B  e.  ZZ )
59 gcdcom 11957 . . . . . . . . . . . . 13  |-  ( ( ( A ^ (
n  +  1 ) )  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A ^
( n  +  1 ) )  gcd  B
)  =  ( B  gcd  ( A ^
( n  +  1 ) ) ) )
6057, 58, 59syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( ( A ^ ( n  + 
1 ) )  gcd 
B )  =  ( B  gcd  ( A ^ ( n  + 
1 ) ) ) )
61 gcdcom 11957 . . . . . . . . . . . . 13  |-  ( ( ( A ^ n
)  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A ^
n )  gcd  B
)  =  ( B  gcd  ( A ^
n ) ) )
6234, 58, 61syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( ( A ^ n )  gcd 
B )  =  ( B  gcd  ( A ^ n ) ) )
6351, 60, 623eqtr4d 2220 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( ( A ^ ( n  + 
1 ) )  gcd 
B )  =  ( ( A ^ n
)  gcd  B )
)
6463eqeq1d 2186 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( ( ( A ^ ( n  +  1 ) )  gcd  B )  =  1  <->  ( ( A ^ n )  gcd 
B )  =  1 ) )
6564biimprd 158 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( ( ( A ^ n )  gcd  B )  =  1  ->  ( ( A ^ ( n  + 
1 ) )  gcd 
B )  =  1 ) )
6623, 65sylanbr 285 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  n  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( ( A ^
n )  gcd  B
)  =  1  -> 
( ( A ^
( n  +  1 ) )  gcd  B
)  =  1 ) )
6766an32s 568 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  /\  n  e.  NN )  ->  (
( ( A ^
n )  gcd  B
)  =  1  -> 
( ( A ^
( n  +  1 ) )  gcd  B
)  =  1 ) )
6867expcom 116 . . . . . 6  |-  ( n  e.  NN  ->  (
( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( ( A ^
n )  gcd  B
)  =  1  -> 
( ( A ^
( n  +  1 ) )  gcd  B
)  =  1 ) ) )
6968a2d 26 . . . . 5  |-  ( n  e.  NN  ->  (
( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( A ^ n
)  gcd  B )  =  1 )  -> 
( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( A ^ (
n  +  1 ) )  gcd  B )  =  1 ) ) )
704, 8, 12, 16, 22, 69nnind 8924 . . . 4  |-  ( N  e.  NN  ->  (
( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( A ^ N
)  gcd  B )  =  1 ) )
7170expd 258 . . 3  |-  ( N  e.  NN  ->  (
( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B )  =  1  ->  ( ( A ^ N )  gcd 
B )  =  1 ) ) )
7271com12 30 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( N  e.  NN  ->  ( ( A  gcd  B )  =  1  -> 
( ( A ^ N )  gcd  B
)  =  1 ) ) )
73723impia 1200 1  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  N  e.  NN )  ->  (
( A  gcd  B
)  =  1  -> 
( ( A ^ N )  gcd  B
)  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148  (class class class)co 5869   1c1 7803    + caddc 7805    x. cmul 7807   NNcn 8908   NN0cn0 9165   ZZcz 9242   ^cexp 10505    gcd cgcd 11926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-stab 831  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-sup 6977  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-dvds 11779  df-gcd 11927
This theorem is referenced by:  rppwr  12012  logbgcd1irr  14052  logbgcd1irraplemexp  14053  lgsne0  14106  2sqlem8  14126
  Copyright terms: Public domain W3C validator