ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rplpwr Unicode version

Theorem rplpwr 12463
Description: If  A and  B are relatively prime, then so are  A ^ N and  B. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
rplpwr  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  N  e.  NN )  ->  (
( A  gcd  B
)  =  1  -> 
( ( A ^ N )  gcd  B
)  =  1 ) )

Proof of Theorem rplpwr
Dummy variables  n  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5975 . . . . . . . 8  |-  ( k  =  1  ->  ( A ^ k )  =  ( A ^ 1 ) )
21oveq1d 5982 . . . . . . 7  |-  ( k  =  1  ->  (
( A ^ k
)  gcd  B )  =  ( ( A ^ 1 )  gcd 
B ) )
32eqeq1d 2216 . . . . . 6  |-  ( k  =  1  ->  (
( ( A ^
k )  gcd  B
)  =  1  <->  (
( A ^ 1 )  gcd  B )  =  1 ) )
43imbi2d 230 . . . . 5  |-  ( k  =  1  ->  (
( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( A ^ k
)  gcd  B )  =  1 )  <->  ( (
( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  ( ( A ^ 1 )  gcd 
B )  =  1 ) ) )
5 oveq2 5975 . . . . . . . 8  |-  ( k  =  n  ->  ( A ^ k )  =  ( A ^ n
) )
65oveq1d 5982 . . . . . . 7  |-  ( k  =  n  ->  (
( A ^ k
)  gcd  B )  =  ( ( A ^ n )  gcd 
B ) )
76eqeq1d 2216 . . . . . 6  |-  ( k  =  n  ->  (
( ( A ^
k )  gcd  B
)  =  1  <->  (
( A ^ n
)  gcd  B )  =  1 ) )
87imbi2d 230 . . . . 5  |-  ( k  =  n  ->  (
( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( A ^ k
)  gcd  B )  =  1 )  <->  ( (
( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  ( ( A ^ n )  gcd 
B )  =  1 ) ) )
9 oveq2 5975 . . . . . . . 8  |-  ( k  =  ( n  + 
1 )  ->  ( A ^ k )  =  ( A ^ (
n  +  1 ) ) )
109oveq1d 5982 . . . . . . 7  |-  ( k  =  ( n  + 
1 )  ->  (
( A ^ k
)  gcd  B )  =  ( ( A ^ ( n  + 
1 ) )  gcd 
B ) )
1110eqeq1d 2216 . . . . . 6  |-  ( k  =  ( n  + 
1 )  ->  (
( ( A ^
k )  gcd  B
)  =  1  <->  (
( A ^ (
n  +  1 ) )  gcd  B )  =  1 ) )
1211imbi2d 230 . . . . 5  |-  ( k  =  ( n  + 
1 )  ->  (
( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( A ^ k
)  gcd  B )  =  1 )  <->  ( (
( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  ( ( A ^ ( n  + 
1 ) )  gcd 
B )  =  1 ) ) )
13 oveq2 5975 . . . . . . . 8  |-  ( k  =  N  ->  ( A ^ k )  =  ( A ^ N
) )
1413oveq1d 5982 . . . . . . 7  |-  ( k  =  N  ->  (
( A ^ k
)  gcd  B )  =  ( ( A ^ N )  gcd 
B ) )
1514eqeq1d 2216 . . . . . 6  |-  ( k  =  N  ->  (
( ( A ^
k )  gcd  B
)  =  1  <->  (
( A ^ N
)  gcd  B )  =  1 ) )
1615imbi2d 230 . . . . 5  |-  ( k  =  N  ->  (
( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( A ^ k
)  gcd  B )  =  1 )  <->  ( (
( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  ( ( A ^ N )  gcd 
B )  =  1 ) ) )
17 nncn 9079 . . . . . . . . . 10  |-  ( A  e.  NN  ->  A  e.  CC )
1817exp1d 10850 . . . . . . . . 9  |-  ( A  e.  NN  ->  ( A ^ 1 )  =  A )
1918oveq1d 5982 . . . . . . . 8  |-  ( A  e.  NN  ->  (
( A ^ 1 )  gcd  B )  =  ( A  gcd  B ) )
2019adantr 276 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A ^
1 )  gcd  B
)  =  ( A  gcd  B ) )
2120eqeq1d 2216 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( ( A ^ 1 )  gcd 
B )  =  1  <-> 
( A  gcd  B
)  =  1 ) )
2221biimpar 297 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  ( ( A ^ 1 )  gcd 
B )  =  1 )
23 df-3an 983 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  <->  ( ( A  e.  NN  /\  B  e.  NN )  /\  n  e.  NN ) )
24 simpl1 1003 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  A  e.  NN )
2524nncnd 9085 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  A  e.  CC )
26 simpl3 1005 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  n  e.  NN )
2726nnnn0d 9383 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  n  e.  NN0 )
2825, 27expp1d 10856 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( A ^
( n  +  1 ) )  =  ( ( A ^ n
)  x.  A ) )
29 simp1 1000 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  A  e.  NN )
30 nnnn0 9337 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  NN  ->  n  e.  NN0 )
31303ad2ant3 1023 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  n  e.  NN0 )
3229, 31nnexpcld 10877 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  ( A ^ n )  e.  NN )
3332nnzd 9529 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  ( A ^ n )  e.  ZZ )
3433adantr 276 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( A ^
n )  e.  ZZ )
3534zcnd 9531 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( A ^
n )  e.  CC )
3635, 25mulcomd 8129 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( ( A ^ n )  x.  A )  =  ( A  x.  ( A ^ n ) ) )
3728, 36eqtrd 2240 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( A ^
( n  +  1 ) )  =  ( A  x.  ( A ^ n ) ) )
3837oveq2d 5983 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( B  gcd  ( A ^ ( n  +  1 ) ) )  =  ( B  gcd  ( A  x.  ( A ^ n ) ) ) )
39 simpl2 1004 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  B  e.  NN )
4032adantr 276 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( A ^
n )  e.  NN )
41 nnz 9426 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  NN  ->  A  e.  ZZ )
42413ad2ant1 1021 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  A  e.  ZZ )
43 nnz 9426 . . . . . . . . . . . . . . . . . 18  |-  ( B  e.  NN  ->  B  e.  ZZ )
44433ad2ant2 1022 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  B  e.  ZZ )
45 gcdcom 12409 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  =  ( B  gcd  A ) )
4642, 44, 45syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  ( A  gcd  B )  =  ( B  gcd  A
) )
4746eqeq1d 2216 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  (
( A  gcd  B
)  =  1  <->  ( B  gcd  A )  =  1 ) )
4847biimpa 296 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( B  gcd  A )  =  1 )
49 rpmulgcd 12462 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  NN  /\  A  e.  NN  /\  ( A ^ n )  e.  NN )  /\  ( B  gcd  A )  =  1 )  -> 
( B  gcd  ( A  x.  ( A ^ n ) ) )  =  ( B  gcd  ( A ^
n ) ) )
5039, 24, 40, 48, 49syl31anc 1253 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( B  gcd  ( A  x.  ( A ^ n ) ) )  =  ( B  gcd  ( A ^
n ) ) )
5138, 50eqtrd 2240 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( B  gcd  ( A ^ ( n  +  1 ) ) )  =  ( B  gcd  ( A ^
n ) ) )
52 peano2nn 9083 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN  ->  (
n  +  1 )  e.  NN )
53523ad2ant3 1023 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  (
n  +  1 )  e.  NN )
5453adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( n  + 
1 )  e.  NN )
5554nnnn0d 9383 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( n  + 
1 )  e.  NN0 )
5624, 55nnexpcld 10877 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( A ^
( n  +  1 ) )  e.  NN )
5756nnzd 9529 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( A ^
( n  +  1 ) )  e.  ZZ )
5844adantr 276 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  B  e.  ZZ )
59 gcdcom 12409 . . . . . . . . . . . . 13  |-  ( ( ( A ^ (
n  +  1 ) )  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A ^
( n  +  1 ) )  gcd  B
)  =  ( B  gcd  ( A ^
( n  +  1 ) ) ) )
6057, 58, 59syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( ( A ^ ( n  + 
1 ) )  gcd 
B )  =  ( B  gcd  ( A ^ ( n  + 
1 ) ) ) )
61 gcdcom 12409 . . . . . . . . . . . . 13  |-  ( ( ( A ^ n
)  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A ^
n )  gcd  B
)  =  ( B  gcd  ( A ^
n ) ) )
6234, 58, 61syl2anc 411 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( ( A ^ n )  gcd 
B )  =  ( B  gcd  ( A ^ n ) ) )
6351, 60, 623eqtr4d 2250 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( ( A ^ ( n  + 
1 ) )  gcd 
B )  =  ( ( A ^ n
)  gcd  B )
)
6463eqeq1d 2216 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( ( ( A ^ ( n  +  1 ) )  gcd  B )  =  1  <->  ( ( A ^ n )  gcd 
B )  =  1 ) )
6564biimprd 158 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( ( ( A ^ n )  gcd  B )  =  1  ->  ( ( A ^ ( n  + 
1 ) )  gcd 
B )  =  1 ) )
6623, 65sylanbr 285 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  n  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( ( A ^
n )  gcd  B
)  =  1  -> 
( ( A ^
( n  +  1 ) )  gcd  B
)  =  1 ) )
6766an32s 568 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  /\  n  e.  NN )  ->  (
( ( A ^
n )  gcd  B
)  =  1  -> 
( ( A ^
( n  +  1 ) )  gcd  B
)  =  1 ) )
6867expcom 116 . . . . . 6  |-  ( n  e.  NN  ->  (
( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( ( A ^
n )  gcd  B
)  =  1  -> 
( ( A ^
( n  +  1 ) )  gcd  B
)  =  1 ) ) )
6968a2d 26 . . . . 5  |-  ( n  e.  NN  ->  (
( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( A ^ n
)  gcd  B )  =  1 )  -> 
( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( A ^ (
n  +  1 ) )  gcd  B )  =  1 ) ) )
704, 8, 12, 16, 22, 69nnind 9087 . . . 4  |-  ( N  e.  NN  ->  (
( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( A ^ N
)  gcd  B )  =  1 ) )
7170expd 258 . . 3  |-  ( N  e.  NN  ->  (
( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B )  =  1  ->  ( ( A ^ N )  gcd 
B )  =  1 ) ) )
7271com12 30 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( N  e.  NN  ->  ( ( A  gcd  B )  =  1  -> 
( ( A ^ N )  gcd  B
)  =  1 ) ) )
73723impia 1203 1  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  N  e.  NN )  ->  (
( A  gcd  B
)  =  1  -> 
( ( A ^ N )  gcd  B
)  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2178  (class class class)co 5967   1c1 7961    + caddc 7963    x. cmul 7965   NNcn 9071   NN0cn0 9330   ZZcz 9407   ^cexp 10720    gcd cgcd 12389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-sup 7112  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-fl 10450  df-mod 10505  df-seqfrec 10630  df-exp 10721  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-dvds 12214  df-gcd 12390
This theorem is referenced by:  rppwr  12464  logbgcd1irr  15554  logbgcd1irraplemexp  15555  lgsne0  15630  2sqlem8  15715
  Copyright terms: Public domain W3C validator