Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > rplpwr | Unicode version |
Description: If and are relatively prime, then so are and . (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.) |
Ref | Expression |
---|---|
rplpwr |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq2 5861 | . . . . . . . 8 | |
2 | 1 | oveq1d 5868 | . . . . . . 7 |
3 | 2 | eqeq1d 2179 | . . . . . 6 |
4 | 3 | imbi2d 229 | . . . . 5 |
5 | oveq2 5861 | . . . . . . . 8 | |
6 | 5 | oveq1d 5868 | . . . . . . 7 |
7 | 6 | eqeq1d 2179 | . . . . . 6 |
8 | 7 | imbi2d 229 | . . . . 5 |
9 | oveq2 5861 | . . . . . . . 8 | |
10 | 9 | oveq1d 5868 | . . . . . . 7 |
11 | 10 | eqeq1d 2179 | . . . . . 6 |
12 | 11 | imbi2d 229 | . . . . 5 |
13 | oveq2 5861 | . . . . . . . 8 | |
14 | 13 | oveq1d 5868 | . . . . . . 7 |
15 | 14 | eqeq1d 2179 | . . . . . 6 |
16 | 15 | imbi2d 229 | . . . . 5 |
17 | nncn 8886 | . . . . . . . . . 10 | |
18 | 17 | exp1d 10604 | . . . . . . . . 9 |
19 | 18 | oveq1d 5868 | . . . . . . . 8 |
20 | 19 | adantr 274 | . . . . . . 7 |
21 | 20 | eqeq1d 2179 | . . . . . 6 |
22 | 21 | biimpar 295 | . . . . 5 |
23 | df-3an 975 | . . . . . . . . 9 | |
24 | simpl1 995 | . . . . . . . . . . . . . . . . 17 | |
25 | 24 | nncnd 8892 | . . . . . . . . . . . . . . . 16 |
26 | simpl3 997 | . . . . . . . . . . . . . . . . 17 | |
27 | 26 | nnnn0d 9188 | . . . . . . . . . . . . . . . 16 |
28 | 25, 27 | expp1d 10610 | . . . . . . . . . . . . . . 15 |
29 | simp1 992 | . . . . . . . . . . . . . . . . . . . 20 | |
30 | nnnn0 9142 | . . . . . . . . . . . . . . . . . . . . 21 | |
31 | 30 | 3ad2ant3 1015 | . . . . . . . . . . . . . . . . . . . 20 |
32 | 29, 31 | nnexpcld 10631 | . . . . . . . . . . . . . . . . . . 19 |
33 | 32 | nnzd 9333 | . . . . . . . . . . . . . . . . . 18 |
34 | 33 | adantr 274 | . . . . . . . . . . . . . . . . 17 |
35 | 34 | zcnd 9335 | . . . . . . . . . . . . . . . 16 |
36 | 35, 25 | mulcomd 7941 | . . . . . . . . . . . . . . 15 |
37 | 28, 36 | eqtrd 2203 | . . . . . . . . . . . . . 14 |
38 | 37 | oveq2d 5869 | . . . . . . . . . . . . 13 |
39 | simpl2 996 | . . . . . . . . . . . . . 14 | |
40 | 32 | adantr 274 | . . . . . . . . . . . . . 14 |
41 | nnz 9231 | . . . . . . . . . . . . . . . . . 18 | |
42 | 41 | 3ad2ant1 1013 | . . . . . . . . . . . . . . . . 17 |
43 | nnz 9231 | . . . . . . . . . . . . . . . . . 18 | |
44 | 43 | 3ad2ant2 1014 | . . . . . . . . . . . . . . . . 17 |
45 | gcdcom 11928 | . . . . . . . . . . . . . . . . 17 | |
46 | 42, 44, 45 | syl2anc 409 | . . . . . . . . . . . . . . . 16 |
47 | 46 | eqeq1d 2179 | . . . . . . . . . . . . . . 15 |
48 | 47 | biimpa 294 | . . . . . . . . . . . . . 14 |
49 | rpmulgcd 11981 | . . . . . . . . . . . . . 14 | |
50 | 39, 24, 40, 48, 49 | syl31anc 1236 | . . . . . . . . . . . . 13 |
51 | 38, 50 | eqtrd 2203 | . . . . . . . . . . . 12 |
52 | peano2nn 8890 | . . . . . . . . . . . . . . . . . 18 | |
53 | 52 | 3ad2ant3 1015 | . . . . . . . . . . . . . . . . 17 |
54 | 53 | adantr 274 | . . . . . . . . . . . . . . . 16 |
55 | 54 | nnnn0d 9188 | . . . . . . . . . . . . . . 15 |
56 | 24, 55 | nnexpcld 10631 | . . . . . . . . . . . . . 14 |
57 | 56 | nnzd 9333 | . . . . . . . . . . . . 13 |
58 | 44 | adantr 274 | . . . . . . . . . . . . 13 |
59 | gcdcom 11928 | . . . . . . . . . . . . 13 | |
60 | 57, 58, 59 | syl2anc 409 | . . . . . . . . . . . 12 |
61 | gcdcom 11928 | . . . . . . . . . . . . 13 | |
62 | 34, 58, 61 | syl2anc 409 | . . . . . . . . . . . 12 |
63 | 51, 60, 62 | 3eqtr4d 2213 | . . . . . . . . . . 11 |
64 | 63 | eqeq1d 2179 | . . . . . . . . . 10 |
65 | 64 | biimprd 157 | . . . . . . . . 9 |
66 | 23, 65 | sylanbr 283 | . . . . . . . 8 |
67 | 66 | an32s 563 | . . . . . . 7 |
68 | 67 | expcom 115 | . . . . . 6 |
69 | 68 | a2d 26 | . . . . 5 |
70 | 4, 8, 12, 16, 22, 69 | nnind 8894 | . . . 4 |
71 | 70 | expd 256 | . . 3 |
72 | 71 | com12 30 | . 2 |
73 | 72 | 3impia 1195 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 973 wceq 1348 wcel 2141 (class class class)co 5853 c1 7775 caddc 7777 cmul 7779 cn 8878 cn0 9135 cz 9212 cexp 10475 cgcd 11897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 ax-arch 7893 ax-caucvg 7894 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-sup 6961 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-2 8937 df-3 8938 df-4 8939 df-n0 9136 df-z 9213 df-uz 9488 df-q 9579 df-rp 9611 df-fz 9966 df-fzo 10099 df-fl 10226 df-mod 10279 df-seqfrec 10402 df-exp 10476 df-cj 10806 df-re 10807 df-im 10808 df-rsqrt 10962 df-abs 10963 df-dvds 11750 df-gcd 11898 |
This theorem is referenced by: rppwr 11983 logbgcd1irr 13679 logbgcd1irraplemexp 13680 lgsne0 13733 2sqlem8 13753 |
Copyright terms: Public domain | W3C validator |