ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rplpwr Unicode version

Theorem rplpwr 11704
Description: If  A and  B are relatively prime, then so are  A ^ N and  B. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
rplpwr  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  N  e.  NN )  ->  (
( A  gcd  B
)  =  1  -> 
( ( A ^ N )  gcd  B
)  =  1 ) )

Proof of Theorem rplpwr
Dummy variables  n  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5775 . . . . . . . 8  |-  ( k  =  1  ->  ( A ^ k )  =  ( A ^ 1 ) )
21oveq1d 5782 . . . . . . 7  |-  ( k  =  1  ->  (
( A ^ k
)  gcd  B )  =  ( ( A ^ 1 )  gcd 
B ) )
32eqeq1d 2146 . . . . . 6  |-  ( k  =  1  ->  (
( ( A ^
k )  gcd  B
)  =  1  <->  (
( A ^ 1 )  gcd  B )  =  1 ) )
43imbi2d 229 . . . . 5  |-  ( k  =  1  ->  (
( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( A ^ k
)  gcd  B )  =  1 )  <->  ( (
( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  ( ( A ^ 1 )  gcd 
B )  =  1 ) ) )
5 oveq2 5775 . . . . . . . 8  |-  ( k  =  n  ->  ( A ^ k )  =  ( A ^ n
) )
65oveq1d 5782 . . . . . . 7  |-  ( k  =  n  ->  (
( A ^ k
)  gcd  B )  =  ( ( A ^ n )  gcd 
B ) )
76eqeq1d 2146 . . . . . 6  |-  ( k  =  n  ->  (
( ( A ^
k )  gcd  B
)  =  1  <->  (
( A ^ n
)  gcd  B )  =  1 ) )
87imbi2d 229 . . . . 5  |-  ( k  =  n  ->  (
( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( A ^ k
)  gcd  B )  =  1 )  <->  ( (
( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  ( ( A ^ n )  gcd 
B )  =  1 ) ) )
9 oveq2 5775 . . . . . . . 8  |-  ( k  =  ( n  + 
1 )  ->  ( A ^ k )  =  ( A ^ (
n  +  1 ) ) )
109oveq1d 5782 . . . . . . 7  |-  ( k  =  ( n  + 
1 )  ->  (
( A ^ k
)  gcd  B )  =  ( ( A ^ ( n  + 
1 ) )  gcd 
B ) )
1110eqeq1d 2146 . . . . . 6  |-  ( k  =  ( n  + 
1 )  ->  (
( ( A ^
k )  gcd  B
)  =  1  <->  (
( A ^ (
n  +  1 ) )  gcd  B )  =  1 ) )
1211imbi2d 229 . . . . 5  |-  ( k  =  ( n  + 
1 )  ->  (
( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( A ^ k
)  gcd  B )  =  1 )  <->  ( (
( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  ( ( A ^ ( n  + 
1 ) )  gcd 
B )  =  1 ) ) )
13 oveq2 5775 . . . . . . . 8  |-  ( k  =  N  ->  ( A ^ k )  =  ( A ^ N
) )
1413oveq1d 5782 . . . . . . 7  |-  ( k  =  N  ->  (
( A ^ k
)  gcd  B )  =  ( ( A ^ N )  gcd 
B ) )
1514eqeq1d 2146 . . . . . 6  |-  ( k  =  N  ->  (
( ( A ^
k )  gcd  B
)  =  1  <->  (
( A ^ N
)  gcd  B )  =  1 ) )
1615imbi2d 229 . . . . 5  |-  ( k  =  N  ->  (
( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( A ^ k
)  gcd  B )  =  1 )  <->  ( (
( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  ( ( A ^ N )  gcd 
B )  =  1 ) ) )
17 nncn 8721 . . . . . . . . . 10  |-  ( A  e.  NN  ->  A  e.  CC )
1817exp1d 10412 . . . . . . . . 9  |-  ( A  e.  NN  ->  ( A ^ 1 )  =  A )
1918oveq1d 5782 . . . . . . . 8  |-  ( A  e.  NN  ->  (
( A ^ 1 )  gcd  B )  =  ( A  gcd  B ) )
2019adantr 274 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A ^
1 )  gcd  B
)  =  ( A  gcd  B ) )
2120eqeq1d 2146 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( ( A ^ 1 )  gcd 
B )  =  1  <-> 
( A  gcd  B
)  =  1 ) )
2221biimpar 295 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  ( ( A ^ 1 )  gcd 
B )  =  1 )
23 df-3an 964 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  <->  ( ( A  e.  NN  /\  B  e.  NN )  /\  n  e.  NN ) )
24 simpl1 984 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  A  e.  NN )
2524nncnd 8727 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  A  e.  CC )
26 simpl3 986 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  n  e.  NN )
2726nnnn0d 9023 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  n  e.  NN0 )
2825, 27expp1d 10418 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( A ^
( n  +  1 ) )  =  ( ( A ^ n
)  x.  A ) )
29 simp1 981 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  A  e.  NN )
30 nnnn0 8977 . . . . . . . . . . . . . . . . . . . . 21  |-  ( n  e.  NN  ->  n  e.  NN0 )
31303ad2ant3 1004 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  n  e.  NN0 )
3229, 31nnexpcld 10439 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  ( A ^ n )  e.  NN )
3332nnzd 9165 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  ( A ^ n )  e.  ZZ )
3433adantr 274 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( A ^
n )  e.  ZZ )
3534zcnd 9167 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( A ^
n )  e.  CC )
3635, 25mulcomd 7780 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( ( A ^ n )  x.  A )  =  ( A  x.  ( A ^ n ) ) )
3728, 36eqtrd 2170 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( A ^
( n  +  1 ) )  =  ( A  x.  ( A ^ n ) ) )
3837oveq2d 5783 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( B  gcd  ( A ^ ( n  +  1 ) ) )  =  ( B  gcd  ( A  x.  ( A ^ n ) ) ) )
39 simpl2 985 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  B  e.  NN )
4032adantr 274 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( A ^
n )  e.  NN )
41 nnz 9066 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  NN  ->  A  e.  ZZ )
42413ad2ant1 1002 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  A  e.  ZZ )
43 nnz 9066 . . . . . . . . . . . . . . . . . 18  |-  ( B  e.  NN  ->  B  e.  ZZ )
44433ad2ant2 1003 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  B  e.  ZZ )
45 gcdcom 11651 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  gcd  B
)  =  ( B  gcd  A ) )
4642, 44, 45syl2anc 408 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  ( A  gcd  B )  =  ( B  gcd  A
) )
4746eqeq1d 2146 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  (
( A  gcd  B
)  =  1  <->  ( B  gcd  A )  =  1 ) )
4847biimpa 294 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( B  gcd  A )  =  1 )
49 rpmulgcd 11703 . . . . . . . . . . . . . 14  |-  ( ( ( B  e.  NN  /\  A  e.  NN  /\  ( A ^ n )  e.  NN )  /\  ( B  gcd  A )  =  1 )  -> 
( B  gcd  ( A  x.  ( A ^ n ) ) )  =  ( B  gcd  ( A ^
n ) ) )
5039, 24, 40, 48, 49syl31anc 1219 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( B  gcd  ( A  x.  ( A ^ n ) ) )  =  ( B  gcd  ( A ^
n ) ) )
5138, 50eqtrd 2170 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( B  gcd  ( A ^ ( n  +  1 ) ) )  =  ( B  gcd  ( A ^
n ) ) )
52 peano2nn 8725 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  NN  ->  (
n  +  1 )  e.  NN )
53523ad2ant3 1004 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  ->  (
n  +  1 )  e.  NN )
5453adantr 274 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( n  + 
1 )  e.  NN )
5554nnnn0d 9023 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( n  + 
1 )  e.  NN0 )
5624, 55nnexpcld 10439 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( A ^
( n  +  1 ) )  e.  NN )
5756nnzd 9165 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( A ^
( n  +  1 ) )  e.  ZZ )
5844adantr 274 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  B  e.  ZZ )
59 gcdcom 11651 . . . . . . . . . . . . 13  |-  ( ( ( A ^ (
n  +  1 ) )  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A ^
( n  +  1 ) )  gcd  B
)  =  ( B  gcd  ( A ^
( n  +  1 ) ) ) )
6057, 58, 59syl2anc 408 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( ( A ^ ( n  + 
1 ) )  gcd 
B )  =  ( B  gcd  ( A ^ ( n  + 
1 ) ) ) )
61 gcdcom 11651 . . . . . . . . . . . . 13  |-  ( ( ( A ^ n
)  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( A ^
n )  gcd  B
)  =  ( B  gcd  ( A ^
n ) ) )
6234, 58, 61syl2anc 408 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( ( A ^ n )  gcd 
B )  =  ( B  gcd  ( A ^ n ) ) )
6351, 60, 623eqtr4d 2180 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( ( A ^ ( n  + 
1 ) )  gcd 
B )  =  ( ( A ^ n
)  gcd  B )
)
6463eqeq1d 2146 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( ( ( A ^ ( n  +  1 ) )  gcd  B )  =  1  <->  ( ( A ^ n )  gcd 
B )  =  1 ) )
6564biimprd 157 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  n  e.  NN )  /\  ( A  gcd  B
)  =  1 )  ->  ( ( ( A ^ n )  gcd  B )  =  1  ->  ( ( A ^ ( n  + 
1 ) )  gcd 
B )  =  1 ) )
6623, 65sylanbr 283 . . . . . . . 8  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  n  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( ( A ^
n )  gcd  B
)  =  1  -> 
( ( A ^
( n  +  1 ) )  gcd  B
)  =  1 ) )
6766an32s 557 . . . . . . 7  |-  ( ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  /\  n  e.  NN )  ->  (
( ( A ^
n )  gcd  B
)  =  1  -> 
( ( A ^
( n  +  1 ) )  gcd  B
)  =  1 ) )
6867expcom 115 . . . . . 6  |-  ( n  e.  NN  ->  (
( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( ( A ^
n )  gcd  B
)  =  1  -> 
( ( A ^
( n  +  1 ) )  gcd  B
)  =  1 ) ) )
6968a2d 26 . . . . 5  |-  ( n  e.  NN  ->  (
( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( A ^ n
)  gcd  B )  =  1 )  -> 
( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( A ^ (
n  +  1 ) )  gcd  B )  =  1 ) ) )
704, 8, 12, 16, 22, 69nnind 8729 . . . 4  |-  ( N  e.  NN  ->  (
( ( A  e.  NN  /\  B  e.  NN )  /\  ( A  gcd  B )  =  1 )  ->  (
( A ^ N
)  gcd  B )  =  1 ) )
7170expd 256 . . 3  |-  ( N  e.  NN  ->  (
( A  e.  NN  /\  B  e.  NN )  ->  ( ( A  gcd  B )  =  1  ->  ( ( A ^ N )  gcd 
B )  =  1 ) ) )
7271com12 30 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( N  e.  NN  ->  ( ( A  gcd  B )  =  1  -> 
( ( A ^ N )  gcd  B
)  =  1 ) ) )
73723impia 1178 1  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  N  e.  NN )  ->  (
( A  gcd  B
)  =  1  -> 
( ( A ^ N )  gcd  B
)  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 962    = wceq 1331    e. wcel 1480  (class class class)co 5767   1c1 7614    + caddc 7616    x. cmul 7618   NNcn 8713   NN0cn0 8970   ZZcz 9047   ^cexp 10285    gcd cgcd 11624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-sup 6864  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-fz 9784  df-fzo 9913  df-fl 10036  df-mod 10089  df-seqfrec 10212  df-exp 10286  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-dvds 11483  df-gcd 11625
This theorem is referenced by:  rppwr  11705
  Copyright terms: Public domain W3C validator