ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem7 Unicode version

Theorem tfrlem7 6375
Description: Lemma for transfinite recursion. The union of all acceptable functions is a function. (Contributed by NM, 9-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.)
Hypothesis
Ref Expression
tfrlem.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
Assertion
Ref Expression
tfrlem7  |-  Fun recs ( F )
Distinct variable group:    x, f, y, F
Allowed substitution hints:    A( x, y, f)

Proof of Theorem tfrlem7
Dummy variables  g  h  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . 3  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
21tfrlem6 6374 . 2  |-  Rel recs ( F )
31recsfval 6373 . . . . . . . . 9  |- recs ( F )  =  U. A
43eleq2i 2263 . . . . . . . 8  |-  ( <.
x ,  u >.  e. recs
( F )  <->  <. x ,  u >.  e.  U. A
)
5 eluni 3842 . . . . . . . 8  |-  ( <.
x ,  u >.  e. 
U. A  <->  E. g
( <. x ,  u >.  e.  g  /\  g  e.  A ) )
64, 5bitri 184 . . . . . . 7  |-  ( <.
x ,  u >.  e. recs
( F )  <->  E. g
( <. x ,  u >.  e.  g  /\  g  e.  A ) )
73eleq2i 2263 . . . . . . . 8  |-  ( <.
x ,  v >.  e. recs ( F )  <->  <. x ,  v >.  e.  U. A
)
8 eluni 3842 . . . . . . . 8  |-  ( <.
x ,  v >.  e.  U. A  <->  E. h
( <. x ,  v
>.  e.  h  /\  h  e.  A ) )
97, 8bitri 184 . . . . . . 7  |-  ( <.
x ,  v >.  e. recs ( F )  <->  E. h
( <. x ,  v
>.  e.  h  /\  h  e.  A ) )
106, 9anbi12i 460 . . . . . 6  |-  ( (
<. x ,  u >.  e. recs
( F )  /\  <.
x ,  v >.  e. recs ( F ) )  <-> 
( E. g (
<. x ,  u >.  e.  g  /\  g  e.  A )  /\  E. h ( <. x ,  v >.  e.  h  /\  h  e.  A
) ) )
11 eeanv 1951 . . . . . 6  |-  ( E. g E. h ( ( <. x ,  u >.  e.  g  /\  g  e.  A )  /\  ( <. x ,  v >.  e.  h  /\  h  e.  A ) )  <->  ( E. g ( <. x ,  u >.  e.  g  /\  g  e.  A
)  /\  E. h
( <. x ,  v
>.  e.  h  /\  h  e.  A ) ) )
1210, 11bitr4i 187 . . . . 5  |-  ( (
<. x ,  u >.  e. recs
( F )  /\  <.
x ,  v >.  e. recs ( F ) )  <->  E. g E. h ( ( <. x ,  u >.  e.  g  /\  g  e.  A )  /\  ( <. x ,  v >.  e.  h  /\  h  e.  A ) ) )
13 df-br 4034 . . . . . . . . 9  |-  ( x g u  <->  <. x ,  u >.  e.  g
)
14 df-br 4034 . . . . . . . . 9  |-  ( x h v  <->  <. x ,  v >.  e.  h
)
1513, 14anbi12i 460 . . . . . . . 8  |-  ( ( x g u  /\  x h v )  <-> 
( <. x ,  u >.  e.  g  /\  <. x ,  v >.  e.  h
) )
161tfrlem5 6372 . . . . . . . . 9  |-  ( ( g  e.  A  /\  h  e.  A )  ->  ( ( x g u  /\  x h v )  ->  u  =  v ) )
1716impcom 125 . . . . . . . 8  |-  ( ( ( x g u  /\  x h v )  /\  ( g  e.  A  /\  h  e.  A ) )  ->  u  =  v )
1815, 17sylanbr 285 . . . . . . 7  |-  ( ( ( <. x ,  u >.  e.  g  /\  <. x ,  v >.  e.  h
)  /\  ( g  e.  A  /\  h  e.  A ) )  ->  u  =  v )
1918an4s 588 . . . . . 6  |-  ( ( ( <. x ,  u >.  e.  g  /\  g  e.  A )  /\  ( <. x ,  v >.  e.  h  /\  h  e.  A ) )  ->  u  =  v )
2019exlimivv 1911 . . . . 5  |-  ( E. g E. h ( ( <. x ,  u >.  e.  g  /\  g  e.  A )  /\  ( <. x ,  v >.  e.  h  /\  h  e.  A ) )  ->  u  =  v )
2112, 20sylbi 121 . . . 4  |-  ( (
<. x ,  u >.  e. recs
( F )  /\  <.
x ,  v >.  e. recs ( F ) )  ->  u  =  v )
2221ax-gen 1463 . . 3  |-  A. v
( ( <. x ,  u >.  e. recs ( F )  /\  <. x ,  v >.  e. recs ( F ) )  ->  u  =  v )
2322gen2 1464 . 2  |-  A. x A. u A. v ( ( <. x ,  u >.  e. recs ( F )  /\  <. x ,  v
>.  e. recs ( F ) )  ->  u  =  v )
24 dffun4 5269 . 2  |-  ( Fun recs
( F )  <->  ( Rel recs ( F )  /\  A. x A. u A. v
( ( <. x ,  u >.  e. recs ( F )  /\  <. x ,  v >.  e. recs ( F ) )  ->  u  =  v )
) )
252, 23, 24mpbir2an 944 1  |-  Fun recs ( F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1362    = wceq 1364   E.wex 1506    e. wcel 2167   {cab 2182   A.wral 2475   E.wrex 2476   <.cop 3625   U.cuni 3839   class class class wbr 4033   Oncon0 4398    |` cres 4665   Rel wrel 4668   Fun wfun 5252    Fn wfn 5253   ` cfv 5258  recscrecs 6362
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-fv 5266  df-recs 6363
This theorem is referenced by:  tfrlem9  6377  tfrfun  6378  tfrlemibfn  6386  tfrlemiubacc  6388  tfri1d  6393  rdgfun  6431
  Copyright terms: Public domain W3C validator