ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tfrlem7 Unicode version

Theorem tfrlem7 6285
Description: Lemma for transfinite recursion. The union of all acceptable functions is a function. (Contributed by NM, 9-Aug-1994.) (Revised by Mario Carneiro, 24-May-2019.)
Hypothesis
Ref Expression
tfrlem.1  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
Assertion
Ref Expression
tfrlem7  |-  Fun recs ( F )
Distinct variable group:    x, f, y, F
Allowed substitution hints:    A( x, y, f)

Proof of Theorem tfrlem7
Dummy variables  g  h  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tfrlem.1 . . 3  |-  A  =  { f  |  E. x  e.  On  (
f  Fn  x  /\  A. y  e.  x  ( f `  y )  =  ( F `  ( f  |`  y
) ) ) }
21tfrlem6 6284 . 2  |-  Rel recs ( F )
31recsfval 6283 . . . . . . . . 9  |- recs ( F )  =  U. A
43eleq2i 2233 . . . . . . . 8  |-  ( <.
x ,  u >.  e. recs
( F )  <->  <. x ,  u >.  e.  U. A
)
5 eluni 3792 . . . . . . . 8  |-  ( <.
x ,  u >.  e. 
U. A  <->  E. g
( <. x ,  u >.  e.  g  /\  g  e.  A ) )
64, 5bitri 183 . . . . . . 7  |-  ( <.
x ,  u >.  e. recs
( F )  <->  E. g
( <. x ,  u >.  e.  g  /\  g  e.  A ) )
73eleq2i 2233 . . . . . . . 8  |-  ( <.
x ,  v >.  e. recs ( F )  <->  <. x ,  v >.  e.  U. A
)
8 eluni 3792 . . . . . . . 8  |-  ( <.
x ,  v >.  e.  U. A  <->  E. h
( <. x ,  v
>.  e.  h  /\  h  e.  A ) )
97, 8bitri 183 . . . . . . 7  |-  ( <.
x ,  v >.  e. recs ( F )  <->  E. h
( <. x ,  v
>.  e.  h  /\  h  e.  A ) )
106, 9anbi12i 456 . . . . . 6  |-  ( (
<. x ,  u >.  e. recs
( F )  /\  <.
x ,  v >.  e. recs ( F ) )  <-> 
( E. g (
<. x ,  u >.  e.  g  /\  g  e.  A )  /\  E. h ( <. x ,  v >.  e.  h  /\  h  e.  A
) ) )
11 eeanv 1920 . . . . . 6  |-  ( E. g E. h ( ( <. x ,  u >.  e.  g  /\  g  e.  A )  /\  ( <. x ,  v >.  e.  h  /\  h  e.  A ) )  <->  ( E. g ( <. x ,  u >.  e.  g  /\  g  e.  A
)  /\  E. h
( <. x ,  v
>.  e.  h  /\  h  e.  A ) ) )
1210, 11bitr4i 186 . . . . 5  |-  ( (
<. x ,  u >.  e. recs
( F )  /\  <.
x ,  v >.  e. recs ( F ) )  <->  E. g E. h ( ( <. x ,  u >.  e.  g  /\  g  e.  A )  /\  ( <. x ,  v >.  e.  h  /\  h  e.  A ) ) )
13 df-br 3983 . . . . . . . . 9  |-  ( x g u  <->  <. x ,  u >.  e.  g
)
14 df-br 3983 . . . . . . . . 9  |-  ( x h v  <->  <. x ,  v >.  e.  h
)
1513, 14anbi12i 456 . . . . . . . 8  |-  ( ( x g u  /\  x h v )  <-> 
( <. x ,  u >.  e.  g  /\  <. x ,  v >.  e.  h
) )
161tfrlem5 6282 . . . . . . . . 9  |-  ( ( g  e.  A  /\  h  e.  A )  ->  ( ( x g u  /\  x h v )  ->  u  =  v ) )
1716impcom 124 . . . . . . . 8  |-  ( ( ( x g u  /\  x h v )  /\  ( g  e.  A  /\  h  e.  A ) )  ->  u  =  v )
1815, 17sylanbr 283 . . . . . . 7  |-  ( ( ( <. x ,  u >.  e.  g  /\  <. x ,  v >.  e.  h
)  /\  ( g  e.  A  /\  h  e.  A ) )  ->  u  =  v )
1918an4s 578 . . . . . 6  |-  ( ( ( <. x ,  u >.  e.  g  /\  g  e.  A )  /\  ( <. x ,  v >.  e.  h  /\  h  e.  A ) )  ->  u  =  v )
2019exlimivv 1884 . . . . 5  |-  ( E. g E. h ( ( <. x ,  u >.  e.  g  /\  g  e.  A )  /\  ( <. x ,  v >.  e.  h  /\  h  e.  A ) )  ->  u  =  v )
2112, 20sylbi 120 . . . 4  |-  ( (
<. x ,  u >.  e. recs
( F )  /\  <.
x ,  v >.  e. recs ( F ) )  ->  u  =  v )
2221ax-gen 1437 . . 3  |-  A. v
( ( <. x ,  u >.  e. recs ( F )  /\  <. x ,  v >.  e. recs ( F ) )  ->  u  =  v )
2322gen2 1438 . 2  |-  A. x A. u A. v ( ( <. x ,  u >.  e. recs ( F )  /\  <. x ,  v
>.  e. recs ( F ) )  ->  u  =  v )
24 dffun4 5199 . 2  |-  ( Fun recs
( F )  <->  ( Rel recs ( F )  /\  A. x A. u A. v
( ( <. x ,  u >.  e. recs ( F )  /\  <. x ,  v >.  e. recs ( F ) )  ->  u  =  v )
) )
252, 23, 24mpbir2an 932 1  |-  Fun recs ( F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1341    = wceq 1343   E.wex 1480    e. wcel 2136   {cab 2151   A.wral 2444   E.wrex 2445   <.cop 3579   U.cuni 3789   class class class wbr 3982   Oncon0 4341    |` cres 4606   Rel wrel 4609   Fun wfun 5182    Fn wfn 5183   ` cfv 5188  recscrecs 6272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196  df-recs 6273
This theorem is referenced by:  tfrlem9  6287  tfrfun  6288  tfrlemibfn  6296  tfrlemiubacc  6298  tfri1d  6303  rdgfun  6341
  Copyright terms: Public domain W3C validator