ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expclzaplem Unicode version

Theorem expclzaplem 10793
Description: Closure law for integer exponentiation. Lemma for expclzap 10794 and expap0i 10801. (Contributed by Jim Kingdon, 9-Jun-2020.)
Assertion
Ref Expression
expclzaplem  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  ZZ )  ->  ( A ^ N )  e. 
{ z  e.  CC  |  z #  0 }
)
Distinct variable groups:    z, A    z, N

Proof of Theorem expclzaplem
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4086 . . . . 5  |-  ( z  =  A  ->  (
z #  0  <->  A #  0
) )
21elrab 2959 . . . 4  |-  ( A  e.  { z  e.  CC  |  z #  0 }  <->  ( A  e.  CC  /\  A #  0 ) )
3 ssrab2 3309 . . . . . 6  |-  { z  e.  CC  |  z #  0 }  C_  CC
4 breq1 4086 . . . . . . . 8  |-  ( z  =  x  ->  (
z #  0  <->  x #  0
) )
54elrab 2959 . . . . . . 7  |-  ( x  e.  { z  e.  CC  |  z #  0 }  <->  ( x  e.  CC  /\  x #  0 ) )
6 breq1 4086 . . . . . . . 8  |-  ( z  =  y  ->  (
z #  0  <->  y #  0
) )
76elrab 2959 . . . . . . 7  |-  ( y  e.  { z  e.  CC  |  z #  0 }  <->  ( y  e.  CC  /\  y #  0 ) )
8 mulcl 8134 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
98ad2ant2r 509 . . . . . . . 8  |-  ( ( ( x  e.  CC  /\  x #  0 )  /\  ( y  e.  CC  /\  y #  0 ) )  ->  ( x  x.  y )  e.  CC )
10 mulap0 8809 . . . . . . . 8  |-  ( ( ( x  e.  CC  /\  x #  0 )  /\  ( y  e.  CC  /\  y #  0 ) )  ->  ( x  x.  y ) #  0 )
11 breq1 4086 . . . . . . . . 9  |-  ( z  =  ( x  x.  y )  ->  (
z #  0  <->  ( x  x.  y ) #  0 ) )
1211elrab 2959 . . . . . . . 8  |-  ( ( x  x.  y )  e.  { z  e.  CC  |  z #  0 }  <->  ( ( x  x.  y )  e.  CC  /\  ( x  x.  y ) #  0 ) )
139, 10, 12sylanbrc 417 . . . . . . 7  |-  ( ( ( x  e.  CC  /\  x #  0 )  /\  ( y  e.  CC  /\  y #  0 ) )  ->  ( x  x.  y )  e.  {
z  e.  CC  | 
z #  0 } )
145, 7, 13syl2anb 291 . . . . . 6  |-  ( ( x  e.  { z  e.  CC  |  z #  0 }  /\  y  e.  { z  e.  CC  |  z #  0 }
)  ->  ( x  x.  y )  e.  {
z  e.  CC  | 
z #  0 } )
15 ax-1cn 8100 . . . . . . 7  |-  1  e.  CC
16 1ap0 8745 . . . . . . 7  |-  1 #  0
17 breq1 4086 . . . . . . . 8  |-  ( z  =  1  ->  (
z #  0  <->  1 #  0
) )
1817elrab 2959 . . . . . . 7  |-  ( 1  e.  { z  e.  CC  |  z #  0 }  <->  ( 1  e.  CC  /\  1 #  0 ) )
1915, 16, 18mpbir2an 948 . . . . . 6  |-  1  e.  { z  e.  CC  |  z #  0 }
20 recclap 8834 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  x #  0 )  ->  (
1  /  x )  e.  CC )
21 recap0 8840 . . . . . . . . 9  |-  ( ( x  e.  CC  /\  x #  0 )  ->  (
1  /  x ) #  0 )
2220, 21jca 306 . . . . . . . 8  |-  ( ( x  e.  CC  /\  x #  0 )  ->  (
( 1  /  x
)  e.  CC  /\  ( 1  /  x
) #  0 ) )
23 breq1 4086 . . . . . . . . 9  |-  ( z  =  ( 1  /  x )  ->  (
z #  0  <->  ( 1  /  x ) #  0 ) )
2423elrab 2959 . . . . . . . 8  |-  ( ( 1  /  x )  e.  { z  e.  CC  |  z #  0 }  <->  ( ( 1  /  x )  e.  CC  /\  ( 1  /  x ) #  0 ) )
2522, 5, 243imtr4i 201 . . . . . . 7  |-  ( x  e.  { z  e.  CC  |  z #  0 }  ->  ( 1  /  x )  e. 
{ z  e.  CC  |  z #  0 }
)
2625adantr 276 . . . . . 6  |-  ( ( x  e.  { z  e.  CC  |  z #  0 }  /\  x #  0 )  ->  (
1  /  x )  e.  { z  e.  CC  |  z #  0 } )
273, 14, 19, 26expcl2lemap 10781 . . . . 5  |-  ( ( A  e.  { z  e.  CC  |  z #  0 }  /\  A #  0  /\  N  e.  ZZ )  ->  ( A ^ N )  e.  {
z  e.  CC  | 
z #  0 } )
28273expia 1229 . . . 4  |-  ( ( A  e.  { z  e.  CC  |  z #  0 }  /\  A #  0 )  ->  ( N  e.  ZZ  ->  ( A ^ N )  e.  { z  e.  CC  |  z #  0 } ) )
292, 28sylanbr 285 . . 3  |-  ( ( ( A  e.  CC  /\  A #  0 )  /\  A #  0 )  ->  ( N  e.  ZZ  ->  ( A ^ N )  e.  { z  e.  CC  |  z #  0 } ) )
3029anabss3 585 . 2  |-  ( ( A  e.  CC  /\  A #  0 )  ->  ( N  e.  ZZ  ->  ( A ^ N )  e.  { z  e.  CC  |  z #  0 } ) )
31303impia 1224 1  |-  ( ( A  e.  CC  /\  A #  0  /\  N  e.  ZZ )  ->  ( A ^ N )  e. 
{ z  e.  CC  |  z #  0 }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    e. wcel 2200   {crab 2512   class class class wbr 4083  (class class class)co 6007   CCcc 8005   0cc0 8007   1c1 8008    x. cmul 8012   # cap 8736    / cdiv 8827   ZZcz 9454   ^cexp 10768
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-n0 9378  df-z 9455  df-uz 9731  df-seqfrec 10678  df-exp 10769
This theorem is referenced by:  expclzap  10794  expap0i  10801  expghmap  14579  lgsne0  15725
  Copyright terms: Public domain W3C validator