ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  expge1 Unicode version

Theorem expge1 10552
Description: A real greater than or equal to 1 raised to a nonnegative integer is greater than or equal to 1. (Contributed by NM, 21-Feb-2005.) (Revised by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expge1  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  1  <_  A )  ->  1  <_  ( A ^ N
) )

Proof of Theorem expge1
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 4006 . . . . . 6  |-  ( z  =  A  ->  (
1  <_  z  <->  1  <_  A ) )
21elrab 2893 . . . . 5  |-  ( A  e.  { z  e.  RR  |  1  <_ 
z }  <->  ( A  e.  RR  /\  1  <_  A ) )
3 ssrab2 3240 . . . . . . 7  |-  { z  e.  RR  |  1  <_  z }  C_  RR
4 ax-resscn 7900 . . . . . . 7  |-  RR  C_  CC
53, 4sstri 3164 . . . . . 6  |-  { z  e.  RR  |  1  <_  z }  C_  CC
6 breq2 4006 . . . . . . . 8  |-  ( z  =  x  ->  (
1  <_  z  <->  1  <_  x ) )
76elrab 2893 . . . . . . 7  |-  ( x  e.  { z  e.  RR  |  1  <_ 
z }  <->  ( x  e.  RR  /\  1  <_  x ) )
8 breq2 4006 . . . . . . . 8  |-  ( z  =  y  ->  (
1  <_  z  <->  1  <_  y ) )
98elrab 2893 . . . . . . 7  |-  ( y  e.  { z  e.  RR  |  1  <_ 
z }  <->  ( y  e.  RR  /\  1  <_ 
y ) )
10 remulcl 7936 . . . . . . . . 9  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  x.  y
)  e.  RR )
1110ad2ant2r 509 . . . . . . . 8  |-  ( ( ( x  e.  RR  /\  1  <_  x )  /\  ( y  e.  RR  /\  1  <_  y )
)  ->  ( x  x.  y )  e.  RR )
12 1t1e1 9067 . . . . . . . . . 10  |-  ( 1  x.  1 )  =  1
13 1re 7953 . . . . . . . . . . . . . 14  |-  1  e.  RR
14 0le1 8434 . . . . . . . . . . . . . 14  |-  0  <_  1
1513, 14pm3.2i 272 . . . . . . . . . . . . 13  |-  ( 1  e.  RR  /\  0  <_  1 )
1615jctl 314 . . . . . . . . . . . 12  |-  ( x  e.  RR  ->  (
( 1  e.  RR  /\  0  <_  1 )  /\  x  e.  RR ) )
1715jctl 314 . . . . . . . . . . . 12  |-  ( y  e.  RR  ->  (
( 1  e.  RR  /\  0  <_  1 )  /\  y  e.  RR ) )
18 lemul12a 8815 . . . . . . . . . . . 12  |-  ( ( ( ( 1  e.  RR  /\  0  <_ 
1 )  /\  x  e.  RR )  /\  (
( 1  e.  RR  /\  0  <_  1 )  /\  y  e.  RR ) )  ->  (
( 1  <_  x  /\  1  <_  y )  ->  ( 1  x.  1 )  <_  (
x  x.  y ) ) )
1916, 17, 18syl2an 289 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( ( 1  <_  x  /\  1  <_  y
)  ->  ( 1  x.  1 )  <_ 
( x  x.  y
) ) )
2019imp 124 . . . . . . . . . 10  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( 1  <_  x  /\  1  <_  y
) )  ->  (
1  x.  1 )  <_  ( x  x.  y ) )
2112, 20eqbrtrrid 4038 . . . . . . . . 9  |-  ( ( ( x  e.  RR  /\  y  e.  RR )  /\  ( 1  <_  x  /\  1  <_  y
) )  ->  1  <_  ( x  x.  y
) )
2221an4s 588 . . . . . . . 8  |-  ( ( ( x  e.  RR  /\  1  <_  x )  /\  ( y  e.  RR  /\  1  <_  y )
)  ->  1  <_  ( x  x.  y ) )
23 breq2 4006 . . . . . . . . 9  |-  ( z  =  ( x  x.  y )  ->  (
1  <_  z  <->  1  <_  ( x  x.  y ) ) )
2423elrab 2893 . . . . . . . 8  |-  ( ( x  x.  y )  e.  { z  e.  RR  |  1  <_ 
z }  <->  ( (
x  x.  y )  e.  RR  /\  1  <_  ( x  x.  y
) ) )
2511, 22, 24sylanbrc 417 . . . . . . 7  |-  ( ( ( x  e.  RR  /\  1  <_  x )  /\  ( y  e.  RR  /\  1  <_  y )
)  ->  ( x  x.  y )  e.  {
z  e.  RR  | 
1  <_  z }
)
267, 9, 25syl2anb 291 . . . . . 6  |-  ( ( x  e.  { z  e.  RR  |  1  <_  z }  /\  y  e.  { z  e.  RR  |  1  <_ 
z } )  -> 
( x  x.  y
)  e.  { z  e.  RR  |  1  <_  z } )
27 1le1 8525 . . . . . . 7  |-  1  <_  1
28 breq2 4006 . . . . . . . 8  |-  ( z  =  1  ->  (
1  <_  z  <->  1  <_  1 ) )
2928elrab 2893 . . . . . . 7  |-  ( 1  e.  { z  e.  RR  |  1  <_ 
z }  <->  ( 1  e.  RR  /\  1  <_  1 ) )
3013, 27, 29mpbir2an 942 . . . . . 6  |-  1  e.  { z  e.  RR  |  1  <_  z }
315, 26, 30expcllem 10526 . . . . 5  |-  ( ( A  e.  { z  e.  RR  |  1  <_  z }  /\  N  e.  NN0 )  -> 
( A ^ N
)  e.  { z  e.  RR  |  1  <_  z } )
322, 31sylanbr 285 . . . 4  |-  ( ( ( A  e.  RR  /\  1  <_  A )  /\  N  e.  NN0 )  ->  ( A ^ N )  e.  {
z  e.  RR  | 
1  <_  z }
)
33323impa 1194 . . 3  |-  ( ( A  e.  RR  /\  1  <_  A  /\  N  e.  NN0 )  ->  ( A ^ N )  e. 
{ z  e.  RR  |  1  <_  z } )
34333com23 1209 . 2  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  1  <_  A )  ->  ( A ^ N )  e. 
{ z  e.  RR  |  1  <_  z } )
35 breq2 4006 . . . 4  |-  ( z  =  ( A ^ N )  ->  (
1  <_  z  <->  1  <_  ( A ^ N ) ) )
3635elrab 2893 . . 3  |-  ( ( A ^ N )  e.  { z  e.  RR  |  1  <_ 
z }  <->  ( ( A ^ N )  e.  RR  /\  1  <_ 
( A ^ N
) ) )
3736simprbi 275 . 2  |-  ( ( A ^ N )  e.  { z  e.  RR  |  1  <_ 
z }  ->  1  <_  ( A ^ N
) )
3834, 37syl 14 1  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  1  <_  A )  ->  1  <_  ( A ^ N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    e. wcel 2148   {crab 2459   class class class wbr 4002  (class class class)co 5872   CCcc 7806   RRcr 7807   0cc0 7808   1c1 7809    x. cmul 7813    <_ cle 7989   NN0cn0 9172   ^cexp 10514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4117  ax-sep 4120  ax-nul 4128  ax-pow 4173  ax-pr 4208  ax-un 4432  ax-setind 4535  ax-iinf 4586  ax-cnex 7899  ax-resscn 7900  ax-1cn 7901  ax-1re 7902  ax-icn 7903  ax-addcl 7904  ax-addrcl 7905  ax-mulcl 7906  ax-mulrcl 7907  ax-addcom 7908  ax-mulcom 7909  ax-addass 7910  ax-mulass 7911  ax-distr 7912  ax-i2m1 7913  ax-0lt1 7914  ax-1rid 7915  ax-0id 7916  ax-rnegex 7917  ax-precex 7918  ax-cnre 7919  ax-pre-ltirr 7920  ax-pre-ltwlin 7921  ax-pre-lttrn 7922  ax-pre-apti 7923  ax-pre-ltadd 7924  ax-pre-mulgt0 7925  ax-pre-mulext 7926
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4003  df-opab 4064  df-mpt 4065  df-tr 4101  df-id 4292  df-po 4295  df-iso 4296  df-iord 4365  df-on 4367  df-ilim 4368  df-suc 4370  df-iom 4589  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-res 4637  df-ima 4638  df-iota 5177  df-fun 5217  df-fn 5218  df-f 5219  df-f1 5220  df-fo 5221  df-f1o 5222  df-fv 5223  df-riota 5828  df-ov 5875  df-oprab 5876  df-mpo 5877  df-1st 6138  df-2nd 6139  df-recs 6303  df-frec 6389  df-pnf 7990  df-mnf 7991  df-xr 7992  df-ltxr 7993  df-le 7994  df-sub 8126  df-neg 8127  df-reap 8528  df-ap 8535  df-div 8626  df-inn 8916  df-n0 9173  df-z 9250  df-uz 9525  df-seqfrec 10441  df-exp 10515
This theorem is referenced by:  expgt1  10553  leexp2a  10568  expge1d  10667
  Copyright terms: Public domain W3C validator