ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfvdm Unicode version

Theorem funfvdm 5549
Description: A simplified expression for the value of a function when we know it's a function. (Contributed by Jim Kingdon, 1-Jan-2019.)
Assertion
Ref Expression
funfvdm  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  =  U. ( F " { A }
) )

Proof of Theorem funfvdm
StepHypRef Expression
1 funfvex 5503 . . 3  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  e.  _V )
2 unisng 3806 . . 3  |-  ( ( F `  A )  e.  _V  ->  U. {
( F `  A
) }  =  ( F `  A ) )
31, 2syl 14 . 2  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  U. { ( F `  A ) }  =  ( F `  A ) )
4 eqid 2165 . . . . 5  |-  dom  F  =  dom  F
5 df-fn 5191 . . . . 5  |-  ( F  Fn  dom  F  <->  ( Fun  F  /\  dom  F  =  dom  F ) )
64, 5mpbiran2 931 . . . 4  |-  ( F  Fn  dom  F  <->  Fun  F )
7 fnsnfv 5545 . . . 4  |-  ( ( F  Fn  dom  F  /\  A  e.  dom  F )  ->  { ( F `  A ) }  =  ( F " { A } ) )
86, 7sylanbr 283 . . 3  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  { ( F `  A ) }  =  ( F " { A } ) )
98unieqd 3800 . 2  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  U. { ( F `  A ) }  =  U. ( F " { A } ) )
103, 9eqtr3d 2200 1  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  =  U. ( F " { A }
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136   _Vcvv 2726   {csn 3576   U.cuni 3789   dom cdm 4604   "cima 4607   Fun wfun 5182    Fn wfn 5183   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-fv 5196
This theorem is referenced by:  funfvdm2  5550  fvun1  5552
  Copyright terms: Public domain W3C validator