ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpcoma Unicode version

Theorem tpcoma 3704
Description: Swap 1st and 2nd members of an undordered triple. (Contributed by NM, 22-May-2015.)
Assertion
Ref Expression
tpcoma  |-  { A ,  B ,  C }  =  { B ,  A ,  C }

Proof of Theorem tpcoma
StepHypRef Expression
1 prcom 3686 . . 3  |-  { A ,  B }  =  { B ,  A }
21uneq1i 3300 . 2  |-  ( { A ,  B }  u.  { C } )  =  ( { B ,  A }  u.  { C } )
3 df-tp 3618 . 2  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
4 df-tp 3618 . 2  |-  { B ,  A ,  C }  =  ( { B ,  A }  u.  { C } )
52, 3, 43eqtr4i 2220 1  |-  { A ,  B ,  C }  =  { B ,  A ,  C }
Colors of variables: wff set class
Syntax hints:    = wceq 1364    u. cun 3142   {csn 3610   {cpr 3611   {ctp 3612
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-v 2754  df-un 3148  df-pr 3617  df-tp 3618
This theorem is referenced by:  tpcomb  3705
  Copyright terms: Public domain W3C validator