ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpcoma Unicode version

Theorem tpcoma 3726
Description: Swap 1st and 2nd members of an undordered triple. (Contributed by NM, 22-May-2015.)
Assertion
Ref Expression
tpcoma  |-  { A ,  B ,  C }  =  { B ,  A ,  C }

Proof of Theorem tpcoma
StepHypRef Expression
1 prcom 3708 . . 3  |-  { A ,  B }  =  { B ,  A }
21uneq1i 3322 . 2  |-  ( { A ,  B }  u.  { C } )  =  ( { B ,  A }  u.  { C } )
3 df-tp 3640 . 2  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
4 df-tp 3640 . 2  |-  { B ,  A ,  C }  =  ( { B ,  A }  u.  { C } )
52, 3, 43eqtr4i 2235 1  |-  { A ,  B ,  C }  =  { B ,  A ,  C }
Colors of variables: wff set class
Syntax hints:    = wceq 1372    u. cun 3163   {csn 3632   {cpr 3633   {ctp 3634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-un 3169  df-pr 3639  df-tp 3640
This theorem is referenced by:  tpcomb  3727
  Copyright terms: Public domain W3C validator