ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uneq1i Unicode version

Theorem uneq1i 3313
Description: Inference adding union to the right in a class equality. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
uneq1i.1  |-  A  =  B
Assertion
Ref Expression
uneq1i  |-  ( A  u.  C )  =  ( B  u.  C
)

Proof of Theorem uneq1i
StepHypRef Expression
1 uneq1i.1 . 2  |-  A  =  B
2 uneq1 3310 . 2  |-  ( A  =  B  ->  ( A  u.  C )  =  ( B  u.  C ) )
31, 2ax-mp 5 1  |-  ( A  u.  C )  =  ( B  u.  C
)
Colors of variables: wff set class
Syntax hints:    = wceq 1364    u. cun 3155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161
This theorem is referenced by:  un12  3321  unundi  3324  tpcoma  3716  qdass  3719  qdassr  3720  tpidm12  3721  resasplitss  5437  fmptpr  5754  df2o3  6488  undifdc  6985  sbthlemi6  7028  exmidfodomrlemim  7268  znnen  12615  setscom  12718
  Copyright terms: Public domain W3C validator