| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uneq1i | Unicode version | ||
| Description: Inference adding union to the right in a class equality. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| uneq1i.1 |
|
| Ref | Expression |
|---|---|
| uneq1i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uneq1i.1 |
. 2
| |
| 2 | uneq1 3351 |
. 2
| |
| 3 | 1, 2 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 |
| This theorem is referenced by: un12 3362 unundi 3365 tpcoma 3760 qdass 3763 qdassr 3764 tpidm12 3765 resasplitss 5505 fmptpr 5831 df2o3 6576 undifdc 7086 sbthlemi6 7129 exmidfodomrlemim 7379 znnen 12969 setscom 13072 |
| Copyright terms: Public domain | W3C validator |