ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tprot Unicode version

Theorem tprot 3584
Description: Rotation of the elements of an unordered triple. (Contributed by Alan Sare, 24-Oct-2011.)
Assertion
Ref Expression
tprot  |-  { A ,  B ,  C }  =  { B ,  C ,  A }

Proof of Theorem tprot
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 3orrot 951 . . 3  |-  ( ( x  =  A  \/  x  =  B  \/  x  =  C )  <->  ( x  =  B  \/  x  =  C  \/  x  =  A )
)
21abbii 2231 . 2  |-  { x  |  ( x  =  A  \/  x  =  B  \/  x  =  C ) }  =  { x  |  (
x  =  B  \/  x  =  C  \/  x  =  A ) }
3 dftp2 3540 . 2  |-  { A ,  B ,  C }  =  { x  |  ( x  =  A  \/  x  =  B  \/  x  =  C ) }
4 dftp2 3540 . 2  |-  { B ,  C ,  A }  =  { x  |  ( x  =  B  \/  x  =  C  \/  x  =  A ) }
52, 3, 43eqtr4i 2146 1  |-  { A ,  B ,  C }  =  { B ,  C ,  A }
Colors of variables: wff set class
Syntax hints:    \/ w3o 944    = wceq 1314   {cab 2101   {ctp 3497
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-3or 946  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2245  df-v 2660  df-un 3043  df-sn 3501  df-pr 3502  df-tp 3503
This theorem is referenced by:  tpcomb  3586  tpass  3587  tpidm13  3591  tpidm23  3592  prsstp23  3643  fvtp2g  5595  fvtp3g  5596  fvtp2  5598  fvtp3  5599
  Copyright terms: Public domain W3C validator