ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tprot Unicode version

Theorem tprot 3530
Description: Rotation of the elements of an unordered triple. (Contributed by Alan Sare, 24-Oct-2011.)
Assertion
Ref Expression
tprot  |-  { A ,  B ,  C }  =  { B ,  C ,  A }

Proof of Theorem tprot
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 3orrot 930 . . 3  |-  ( ( x  =  A  \/  x  =  B  \/  x  =  C )  <->  ( x  =  B  \/  x  =  C  \/  x  =  A )
)
21abbii 2203 . 2  |-  { x  |  ( x  =  A  \/  x  =  B  \/  x  =  C ) }  =  { x  |  (
x  =  B  \/  x  =  C  \/  x  =  A ) }
3 dftp2 3486 . 2  |-  { A ,  B ,  C }  =  { x  |  ( x  =  A  \/  x  =  B  \/  x  =  C ) }
4 dftp2 3486 . 2  |-  { B ,  C ,  A }  =  { x  |  ( x  =  B  \/  x  =  C  \/  x  =  A ) }
52, 3, 43eqtr4i 2118 1  |-  { A ,  B ,  C }  =  { B ,  C ,  A }
Colors of variables: wff set class
Syntax hints:    \/ w3o 923    = wceq 1289   {cab 2074   {ctp 3443
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070
This theorem depends on definitions:  df-bi 115  df-3or 925  df-tru 1292  df-nf 1395  df-sb 1693  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-v 2621  df-un 3001  df-sn 3447  df-pr 3448  df-tp 3449
This theorem is referenced by:  tpcomb  3532  tpass  3533  tpidm13  3537  tpidm23  3538  prsstp23  3587  fvtp2g  5488  fvtp3g  5489  fvtp2  5491  fvtp3  5492
  Copyright terms: Public domain W3C validator