Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  tprot Unicode version

Theorem tprot 3648
 Description: Rotation of the elements of an unordered triple. (Contributed by Alan Sare, 24-Oct-2011.)
Assertion
Ref Expression
tprot

Proof of Theorem tprot
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 3orrot 969 . . 3
21abbii 2270 . 2
3 dftp2 3604 . 2
4 dftp2 3604 . 2
52, 3, 43eqtr4i 2185 1
 Colors of variables: wff set class Syntax hints:   w3o 962   wceq 1332  cab 2140  ctp 3558 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-ext 2136 This theorem depends on definitions:  df-bi 116  df-3or 964  df-tru 1335  df-nf 1438  df-sb 1740  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-v 2711  df-un 3102  df-sn 3562  df-pr 3563  df-tp 3564 This theorem is referenced by:  tpcomb  3650  tpass  3651  tpidm13  3655  tpidm23  3656  prsstp23  3707  fvtp2g  5669  fvtp3g  5670  fvtp2  5672  fvtp3  5673
 Copyright terms: Public domain W3C validator