![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tpcoma | GIF version |
Description: Swap 1st and 2nd members of an undordered triple. (Contributed by NM, 22-May-2015.) |
Ref | Expression |
---|---|
tpcoma | ⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐴, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prcom 3682 | . . 3 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} | |
2 | 1 | uneq1i 3299 | . 2 ⊢ ({𝐴, 𝐵} ∪ {𝐶}) = ({𝐵, 𝐴} ∪ {𝐶}) |
3 | df-tp 3614 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
4 | df-tp 3614 | . 2 ⊢ {𝐵, 𝐴, 𝐶} = ({𝐵, 𝐴} ∪ {𝐶}) | |
5 | 2, 3, 4 | 3eqtr4i 2219 | 1 ⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐴, 𝐶} |
Colors of variables: wff set class |
Syntax hints: = wceq 1363 ∪ cun 3141 {csn 3606 {cpr 3607 {ctp 3608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2170 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2175 df-cleq 2181 df-clel 2184 df-nfc 2320 df-v 2753 df-un 3147 df-pr 3613 df-tp 3614 |
This theorem is referenced by: tpcomb 3701 |
Copyright terms: Public domain | W3C validator |