| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > tpcoma | GIF version | ||
| Description: Swap 1st and 2nd members of an undordered triple. (Contributed by NM, 22-May-2015.) | 
| Ref | Expression | 
|---|---|
| tpcoma | ⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐴, 𝐶} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | prcom 3698 | . . 3 ⊢ {𝐴, 𝐵} = {𝐵, 𝐴} | |
| 2 | 1 | uneq1i 3313 | . 2 ⊢ ({𝐴, 𝐵} ∪ {𝐶}) = ({𝐵, 𝐴} ∪ {𝐶}) | 
| 3 | df-tp 3630 | . 2 ⊢ {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶}) | |
| 4 | df-tp 3630 | . 2 ⊢ {𝐵, 𝐴, 𝐶} = ({𝐵, 𝐴} ∪ {𝐶}) | |
| 5 | 2, 3, 4 | 3eqtr4i 2227 | 1 ⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐴, 𝐶} | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 ∪ cun 3155 {csn 3622 {cpr 3623 {ctp 3624 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 df-pr 3629 df-tp 3630 | 
| This theorem is referenced by: tpcomb 3717 | 
| Copyright terms: Public domain | W3C validator |