ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpcoma GIF version

Theorem tpcoma 3728
Description: Swap 1st and 2nd members of an undordered triple. (Contributed by NM, 22-May-2015.)
Assertion
Ref Expression
tpcoma {𝐴, 𝐵, 𝐶} = {𝐵, 𝐴, 𝐶}

Proof of Theorem tpcoma
StepHypRef Expression
1 prcom 3710 . . 3 {𝐴, 𝐵} = {𝐵, 𝐴}
21uneq1i 3324 . 2 ({𝐴, 𝐵} ∪ {𝐶}) = ({𝐵, 𝐴} ∪ {𝐶})
3 df-tp 3642 . 2 {𝐴, 𝐵, 𝐶} = ({𝐴, 𝐵} ∪ {𝐶})
4 df-tp 3642 . 2 {𝐵, 𝐴, 𝐶} = ({𝐵, 𝐴} ∪ {𝐶})
52, 3, 43eqtr4i 2237 1 {𝐴, 𝐵, 𝐶} = {𝐵, 𝐴, 𝐶}
Colors of variables: wff set class
Syntax hints:   = wceq 1373  cun 3165  {csn 3634  {cpr 3635  {ctp 3636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-un 3171  df-pr 3641  df-tp 3642
This theorem is referenced by:  tpcomb  3729
  Copyright terms: Public domain W3C validator