ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snnzg Unicode version

Theorem snnzg 3693
Description: The singleton of a set is not empty. (Contributed by NM, 14-Dec-2008.)
Assertion
Ref Expression
snnzg  |-  ( A  e.  V  ->  { A }  =/=  (/) )

Proof of Theorem snnzg
StepHypRef Expression
1 snidg 3605 . 2  |-  ( A  e.  V  ->  A  e.  { A } )
2 ne0i 3415 . 2  |-  ( A  e.  { A }  ->  { A }  =/=  (/) )
31, 2syl 14 1  |-  ( A  e.  V  ->  { A }  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2136    =/= wne 2336   (/)c0 3409   {csn 3576
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-v 2728  df-dif 3118  df-nul 3410  df-sn 3582
This theorem is referenced by:  snnz  3695  0nelop  4226
  Copyright terms: Public domain W3C validator