ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpid3 GIF version

Theorem tpid3 3692
Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Hypothesis
Ref Expression
tpid3.1 𝐶 ∈ V
Assertion
Ref Expression
tpid3 𝐶 ∈ {𝐴, 𝐵, 𝐶}

Proof of Theorem tpid3
StepHypRef Expression
1 eqid 2165 . . 3 𝐶 = 𝐶
213mix3i 1161 . 2 (𝐶 = 𝐴𝐶 = 𝐵𝐶 = 𝐶)
3 tpid3.1 . . 3 𝐶 ∈ V
43eltp 3624 . 2 (𝐶 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐶 = 𝐴𝐶 = 𝐵𝐶 = 𝐶))
52, 4mpbir 145 1 𝐶 ∈ {𝐴, 𝐵, 𝐶}
Colors of variables: wff set class
Syntax hints:  w3o 967   = wceq 1343  wcel 2136  Vcvv 2726  {ctp 3578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3or 969  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-tp 3584
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator