ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpidm Unicode version

Theorem tpidm 3685
Description: Unordered triple  { A ,  A ,  A } is just an overlong way to write  { A }. (Contributed by David A. Wheeler, 10-May-2015.)
Assertion
Ref Expression
tpidm  |-  { A ,  A ,  A }  =  { A }

Proof of Theorem tpidm
StepHypRef Expression
1 tpidm12 3682 . 2  |-  { A ,  A ,  A }  =  { A ,  A }
2 dfsn2 3597 . 2  |-  { A }  =  { A ,  A }
31, 2eqtr4i 2194 1  |-  { A ,  A ,  A }  =  { A }
Colors of variables: wff set class
Syntax hints:    = wceq 1348   {csn 3583   {cpr 3584   {ctp 3585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-v 2732  df-un 3125  df-pr 3590  df-tp 3591
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator