ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpidm23 Unicode version

Theorem tpidm23 3677
Description: Unordered triple  { A ,  B ,  B } is just an overlong way to write  { A ,  B }. (Contributed by David A. Wheeler, 10-May-2015.)
Assertion
Ref Expression
tpidm23  |-  { A ,  B ,  B }  =  { A ,  B }

Proof of Theorem tpidm23
StepHypRef Expression
1 tprot 3669 . 2  |-  { A ,  B ,  B }  =  { B ,  B ,  A }
2 tpidm12 3675 . 2  |-  { B ,  B ,  A }  =  { B ,  A }
3 prcom 3652 . 2  |-  { B ,  A }  =  { A ,  B }
41, 2, 33eqtri 2190 1  |-  { A ,  B ,  B }  =  { A ,  B }
Colors of variables: wff set class
Syntax hints:    = wceq 1343   {cpr 3577   {ctp 3578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3or 969  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120  df-sn 3582  df-pr 3583  df-tp 3584
This theorem is referenced by:  tppreq3  3679
  Copyright terms: Public domain W3C validator