ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tppreq3 Unicode version

Theorem tppreq3 3725
Description: An unordered triple is an unordered pair if one of its elements is identical with another element. (Contributed by Alexander van der Vekens, 6-Oct-2017.)
Assertion
Ref Expression
tppreq3  |-  ( B  =  C  ->  { A ,  B ,  C }  =  { A ,  B } )

Proof of Theorem tppreq3
StepHypRef Expression
1 tpeq3 3710 . . 3  |-  ( C  =  B  ->  { A ,  B ,  C }  =  { A ,  B ,  B } )
21eqcoms 2199 . 2  |-  ( B  =  C  ->  { A ,  B ,  C }  =  { A ,  B ,  B } )
3 tpidm23 3723 . 2  |-  { A ,  B ,  B }  =  { A ,  B }
42, 3eqtrdi 2245 1  |-  ( B  =  C  ->  { A ,  B ,  C }  =  { A ,  B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   {cpr 3623   {ctp 3624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3or 981  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-tp 3630
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator