ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tppreq3 Unicode version

Theorem tppreq3 3769
Description: An unordered triple is an unordered pair if one of its elements is identical with another element. (Contributed by Alexander van der Vekens, 6-Oct-2017.)
Assertion
Ref Expression
tppreq3  |-  ( B  =  C  ->  { A ,  B ,  C }  =  { A ,  B } )

Proof of Theorem tppreq3
StepHypRef Expression
1 tpeq3 3754 . . 3  |-  ( C  =  B  ->  { A ,  B ,  C }  =  { A ,  B ,  B } )
21eqcoms 2232 . 2  |-  ( B  =  C  ->  { A ,  B ,  C }  =  { A ,  B ,  B } )
3 tpidm23 3767 . 2  |-  { A ,  B ,  B }  =  { A ,  B }
42, 3eqtrdi 2278 1  |-  ( B  =  C  ->  { A ,  B ,  C }  =  { A ,  B } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395   {cpr 3667   {ctp 3668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-tp 3674
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator