ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpidm12 Unicode version

Theorem tpidm12 3732
Description: Unordered triple  { A ,  A ,  B } is just an overlong way to write  { A ,  B }. (Contributed by David A. Wheeler, 10-May-2015.)
Assertion
Ref Expression
tpidm12  |-  { A ,  A ,  B }  =  { A ,  B }

Proof of Theorem tpidm12
StepHypRef Expression
1 dfsn2 3647 . . 3  |-  { A }  =  { A ,  A }
21uneq1i 3323 . 2  |-  ( { A }  u.  { B } )  =  ( { A ,  A }  u.  { B } )
3 df-pr 3640 . 2  |-  { A ,  B }  =  ( { A }  u.  { B } )
4 df-tp 3641 . 2  |-  { A ,  A ,  B }  =  ( { A ,  A }  u.  { B } )
52, 3, 43eqtr4ri 2237 1  |-  { A ,  A ,  B }  =  { A ,  B }
Colors of variables: wff set class
Syntax hints:    = wceq 1373    u. cun 3164   {csn 3633   {cpr 3634   {ctp 3635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-pr 3640  df-tp 3641
This theorem is referenced by:  tpidm13  3733  tpidm23  3734  tpidm  3735
  Copyright terms: Public domain W3C validator