| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfsn2 | Unicode version | ||
| Description: Alternate definition of singleton. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.) |
| Ref | Expression |
|---|---|
| dfsn2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 3640 |
. 2
| |
| 2 | unidm 3316 |
. 2
| |
| 3 | 1, 2 | eqtr2i 2227 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 df-pr 3640 |
| This theorem is referenced by: nfsn 3693 tpidm12 3732 tpidm 3735 preqsn 3816 opid 3837 unisn 3866 intsng 3919 opeqsn 4297 relop 4828 funopg 5305 funopsn 5762 enpr1g 6890 prfidceq 7025 hashprg 10953 bj-snexg 15848 |
| Copyright terms: Public domain | W3C validator |