| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dfsn2 | Unicode version | ||
| Description: Alternate definition of singleton. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.) |
| Ref | Expression |
|---|---|
| dfsn2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-pr 3650 |
. 2
| |
| 2 | unidm 3324 |
. 2
| |
| 3 | 1, 2 | eqtr2i 2229 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 df-pr 3650 |
| This theorem is referenced by: nfsn 3703 tpidm12 3742 tpidm 3745 preqsn 3829 opid 3851 unisn 3880 intsng 3933 opeqsn 4315 relop 4846 funopg 5324 funopsn 5785 enpr1g 6913 prfidceq 7051 hashprg 10990 upgrex 15814 bj-snexg 16047 |
| Copyright terms: Public domain | W3C validator |