ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfsn2 Unicode version

Theorem dfsn2 3647
Description: Alternate definition of singleton. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.)
Assertion
Ref Expression
dfsn2  |-  { A }  =  { A ,  A }

Proof of Theorem dfsn2
StepHypRef Expression
1 df-pr 3640 . 2  |-  { A ,  A }  =  ( { A }  u.  { A } )
2 unidm 3316 . 2  |-  ( { A }  u.  { A } )  =  { A }
31, 2eqtr2i 2227 1  |-  { A }  =  { A ,  A }
Colors of variables: wff set class
Syntax hints:    = wceq 1373    u. cun 3164   {csn 3633   {cpr 3634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-un 3170  df-pr 3640
This theorem is referenced by:  nfsn  3693  tpidm12  3732  tpidm  3735  preqsn  3816  opid  3837  unisn  3866  intsng  3919  opeqsn  4297  relop  4828  funopg  5305  funopsn  5762  enpr1g  6890  prfidceq  7025  hashprg  10953  bj-snexg  15848
  Copyright terms: Public domain W3C validator