Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dfsn2 | Unicode version |
Description: Alternate definition of singleton. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.) |
Ref | Expression |
---|---|
dfsn2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr 3583 | . 2 | |
2 | unidm 3265 | . 2 | |
3 | 1, 2 | eqtr2i 2187 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1343 cun 3114 csn 3576 cpr 3577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-un 3120 df-pr 3583 |
This theorem is referenced by: nfsn 3636 tpidm12 3675 tpidm 3678 preqsn 3755 opid 3776 unisn 3805 intsng 3858 opeqsn 4230 relop 4754 funopg 5222 enpr1g 6764 hashprg 10721 bj-snexg 13794 |
Copyright terms: Public domain | W3C validator |