ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfsn2 Unicode version

Theorem dfsn2 3657
Description: Alternate definition of singleton. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.)
Assertion
Ref Expression
dfsn2  |-  { A }  =  { A ,  A }

Proof of Theorem dfsn2
StepHypRef Expression
1 df-pr 3650 . 2  |-  { A ,  A }  =  ( { A }  u.  { A } )
2 unidm 3324 . 2  |-  ( { A }  u.  { A } )  =  { A }
31, 2eqtr2i 2229 1  |-  { A }  =  { A ,  A }
Colors of variables: wff set class
Syntax hints:    = wceq 1373    u. cun 3172   {csn 3643   {cpr 3644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-v 2778  df-un 3178  df-pr 3650
This theorem is referenced by:  nfsn  3703  tpidm12  3742  tpidm  3745  preqsn  3829  opid  3851  unisn  3880  intsng  3933  opeqsn  4315  relop  4846  funopg  5324  funopsn  5785  enpr1g  6913  prfidceq  7051  hashprg  10990  upgrex  15814  bj-snexg  16047
  Copyright terms: Public domain W3C validator