ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfsn2 Unicode version

Theorem dfsn2 3680
Description: Alternate definition of singleton. Definition 5.1 of [TakeutiZaring] p. 15. (Contributed by NM, 24-Apr-1994.)
Assertion
Ref Expression
dfsn2  |-  { A }  =  { A ,  A }

Proof of Theorem dfsn2
StepHypRef Expression
1 df-pr 3673 . 2  |-  { A ,  A }  =  ( { A }  u.  { A } )
2 unidm 3347 . 2  |-  ( { A }  u.  { A } )  =  { A }
31, 2eqtr2i 2251 1  |-  { A }  =  { A ,  A }
Colors of variables: wff set class
Syntax hints:    = wceq 1395    u. cun 3195   {csn 3666   {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-un 3201  df-pr 3673
This theorem is referenced by:  nfsn  3726  tpidm12  3765  tpidm  3768  ifpprsnssdc  3774  preqsn  3853  opid  3875  unisn  3904  intsng  3957  opeqsn  4339  relop  4872  funopg  5352  funopsn  5817  enpr1g  6950  prfidceq  7090  hashprg  11030  upgrex  15903  umgrnloop0  15917  ifpsnprss  16054  upgriswlkdc  16071  bj-snexg  16275
  Copyright terms: Public domain W3C validator