ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpnz Unicode version

Theorem tpnz 3686
Description: A triplet containing a set is not empty. (Contributed by NM, 10-Apr-1994.)
Hypothesis
Ref Expression
tpnz.1  |-  A  e. 
_V
Assertion
Ref Expression
tpnz  |-  { A ,  B ,  C }  =/=  (/)

Proof of Theorem tpnz
StepHypRef Expression
1 tpnz.1 . . 3  |-  A  e. 
_V
21tpid1 3672 . 2  |-  A  e. 
{ A ,  B ,  C }
3 ne0i 3401 . 2  |-  ( A  e.  { A ,  B ,  C }  ->  { A ,  B ,  C }  =/=  (/) )
42, 3ax-mp 5 1  |-  { A ,  B ,  C }  =/=  (/)
Colors of variables: wff set class
Syntax hints:    e. wcel 2128    =/= wne 2327   _Vcvv 2712   (/)c0 3395   {ctp 3563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-3or 964  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-v 2714  df-dif 3104  df-un 3106  df-nul 3396  df-sn 3567  df-pr 3568  df-tp 3569
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator