ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpnz Unicode version

Theorem tpnz 3732
Description: A triplet containing a set is not empty. (Contributed by NM, 10-Apr-1994.)
Hypothesis
Ref Expression
tpnz.1  |-  A  e. 
_V
Assertion
Ref Expression
tpnz  |-  { A ,  B ,  C }  =/=  (/)

Proof of Theorem tpnz
StepHypRef Expression
1 tpnz.1 . . 3  |-  A  e. 
_V
21tpid1 3718 . 2  |-  A  e. 
{ A ,  B ,  C }
3 ne0i 3444 . 2  |-  ( A  e.  { A ,  B ,  C }  ->  { A ,  B ,  C }  =/=  (/) )
42, 3ax-mp 5 1  |-  { A ,  B ,  C }  =/=  (/)
Colors of variables: wff set class
Syntax hints:    e. wcel 2160    =/= wne 2360   _Vcvv 2752   (/)c0 3437   {ctp 3609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2171
This theorem depends on definitions:  df-bi 117  df-3or 981  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-v 2754  df-dif 3146  df-un 3148  df-nul 3438  df-sn 3613  df-pr 3614  df-tp 3615
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator