ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  tpnz GIF version

Theorem tpnz 3761
Description: A triplet containing a set is not empty. (Contributed by NM, 10-Apr-1994.)
Hypothesis
Ref Expression
tpnz.1 𝐴 ∈ V
Assertion
Ref Expression
tpnz {𝐴, 𝐵, 𝐶} ≠ ∅

Proof of Theorem tpnz
StepHypRef Expression
1 tpnz.1 . . 3 𝐴 ∈ V
21tpid1 3746 . 2 𝐴 ∈ {𝐴, 𝐵, 𝐶}
3 ne0i 3469 . 2 (𝐴 ∈ {𝐴, 𝐵, 𝐶} → {𝐴, 𝐵, 𝐶} ≠ ∅)
42, 3ax-mp 5 1 {𝐴, 𝐵, 𝐶} ≠ ∅
Colors of variables: wff set class
Syntax hints:  wcel 2177  wne 2377  Vcvv 2773  c0 3462  {ctp 3637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-3or 982  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-v 2775  df-dif 3170  df-un 3172  df-nul 3463  df-sn 3641  df-pr 3642  df-tp 3643
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator