![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > tpnz | GIF version |
Description: A triplet containing a set is not empty. (Contributed by NM, 10-Apr-1994.) |
Ref | Expression |
---|---|
tpnz.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
tpnz | ⊢ {𝐴, 𝐵, 𝐶} ≠ ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tpnz.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | tpid1 3581 | . 2 ⊢ 𝐴 ∈ {𝐴, 𝐵, 𝐶} |
3 | ne0i 3316 | . 2 ⊢ (𝐴 ∈ {𝐴, 𝐵, 𝐶} → {𝐴, 𝐵, 𝐶} ≠ ∅) | |
4 | 2, 3 | ax-mp 7 | 1 ⊢ {𝐴, 𝐵, 𝐶} ≠ ∅ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1448 ≠ wne 2267 Vcvv 2641 ∅c0 3310 {ctp 3476 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 |
This theorem depends on definitions: df-bi 116 df-3or 931 df-tru 1302 df-nf 1405 df-sb 1704 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-v 2643 df-dif 3023 df-un 3025 df-nul 3311 df-sn 3480 df-pr 3481 df-tp 3482 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |