| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > tpnz | GIF version | ||
| Description: A triplet containing a set is not empty. (Contributed by NM, 10-Apr-1994.) |
| Ref | Expression |
|---|---|
| tpnz.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| tpnz | ⊢ {𝐴, 𝐵, 𝐶} ≠ ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tpnz.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | 1 | tpid1 3746 | . 2 ⊢ 𝐴 ∈ {𝐴, 𝐵, 𝐶} |
| 3 | ne0i 3469 | . 2 ⊢ (𝐴 ∈ {𝐴, 𝐵, 𝐶} → {𝐴, 𝐵, 𝐶} ≠ ∅) | |
| 4 | 2, 3 | ax-mp 5 | 1 ⊢ {𝐴, 𝐵, 𝐶} ≠ ∅ |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2177 ≠ wne 2377 Vcvv 2773 ∅c0 3462 {ctp 3637 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-v 2775 df-dif 3170 df-un 3172 df-nul 3463 df-sn 3641 df-pr 3642 df-tp 3643 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |