ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prnzg Unicode version

Theorem prnzg 3746
Description: A pair containing a set is not empty. It is also inhabited (see prmg 3743). (Contributed by FL, 19-Sep-2011.)
Assertion
Ref Expression
prnzg  |-  ( A  e.  V  ->  { A ,  B }  =/=  (/) )

Proof of Theorem prnzg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 preq1 3699 . . 3  |-  ( x  =  A  ->  { x ,  B }  =  { A ,  B }
)
21neeq1d 2385 . 2  |-  ( x  =  A  ->  ( { x ,  B }  =/=  (/)  <->  { A ,  B }  =/=  (/) ) )
3 vex 2766 . . 3  |-  x  e. 
_V
43prnz 3744 . 2  |-  { x ,  B }  =/=  (/)
52, 4vtoclg 2824 1  |-  ( A  e.  V  ->  { A ,  B }  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167    =/= wne 2367   (/)c0 3450   {cpr 3623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-v 2765  df-dif 3159  df-un 3161  df-nul 3451  df-sn 3628  df-pr 3629
This theorem is referenced by:  0nelop  4281
  Copyright terms: Public domain W3C validator