ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prnzg Unicode version

Theorem prnzg 3792
Description: A pair containing a set is not empty. It is also inhabited (see prmg 3789). (Contributed by FL, 19-Sep-2011.)
Assertion
Ref Expression
prnzg  |-  ( A  e.  V  ->  { A ,  B }  =/=  (/) )

Proof of Theorem prnzg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 preq1 3743 . . 3  |-  ( x  =  A  ->  { x ,  B }  =  { A ,  B }
)
21neeq1d 2418 . 2  |-  ( x  =  A  ->  ( { x ,  B }  =/=  (/)  <->  { A ,  B }  =/=  (/) ) )
3 vex 2802 . . 3  |-  x  e. 
_V
43prnz 3790 . 2  |-  { x ,  B }  =/=  (/)
52, 4vtoclg 2861 1  |-  ( A  e.  V  ->  { A ,  B }  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    e. wcel 2200    =/= wne 2400   (/)c0 3491   {cpr 3667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-v 2801  df-dif 3199  df-un 3201  df-nul 3492  df-sn 3672  df-pr 3673
This theorem is referenced by:  0nelop  4334
  Copyright terms: Public domain W3C validator