ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prnzg Unicode version

Theorem prnzg 3707
Description: A pair containing a set is not empty. (Contributed by FL, 19-Sep-2011.)
Assertion
Ref Expression
prnzg  |-  ( A  e.  V  ->  { A ,  B }  =/=  (/) )

Proof of Theorem prnzg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 preq1 3660 . . 3  |-  ( x  =  A  ->  { x ,  B }  =  { A ,  B }
)
21neeq1d 2358 . 2  |-  ( x  =  A  ->  ( { x ,  B }  =/=  (/)  <->  { A ,  B }  =/=  (/) ) )
3 vex 2733 . . 3  |-  x  e. 
_V
43prnz 3705 . 2  |-  { x ,  B }  =/=  (/)
52, 4vtoclg 2790 1  |-  ( A  e.  V  ->  { A ,  B }  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141    =/= wne 2340   (/)c0 3414   {cpr 3584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-tru 1351  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-v 2732  df-dif 3123  df-un 3125  df-nul 3415  df-sn 3589  df-pr 3590
This theorem is referenced by:  0nelop  4233
  Copyright terms: Public domain W3C validator