ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prnzg Unicode version

Theorem prnzg 3757
Description: A pair containing a set is not empty. It is also inhabited (see prmg 3754). (Contributed by FL, 19-Sep-2011.)
Assertion
Ref Expression
prnzg  |-  ( A  e.  V  ->  { A ,  B }  =/=  (/) )

Proof of Theorem prnzg
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 preq1 3710 . . 3  |-  ( x  =  A  ->  { x ,  B }  =  { A ,  B }
)
21neeq1d 2394 . 2  |-  ( x  =  A  ->  ( { x ,  B }  =/=  (/)  <->  { A ,  B }  =/=  (/) ) )
3 vex 2775 . . 3  |-  x  e. 
_V
43prnz 3755 . 2  |-  { x ,  B }  =/=  (/)
52, 4vtoclg 2833 1  |-  ( A  e.  V  ->  { A ,  B }  =/=  (/) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176    =/= wne 2376   (/)c0 3460   {cpr 3634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-v 2774  df-dif 3168  df-un 3170  df-nul 3461  df-sn 3639  df-pr 3640
This theorem is referenced by:  0nelop  4293
  Copyright terms: Public domain W3C validator