ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undif1ss GIF version

Theorem undif1ss 3376
Description: Absorption of difference by union. In classical logic, as Theorem 35 of [Suppes] p. 29, this would be equality rather than subset. (Contributed by Jim Kingdon, 4-Aug-2018.)
Assertion
Ref Expression
undif1ss ((𝐴𝐵) ∪ 𝐵) ⊆ (𝐴𝐵)

Proof of Theorem undif1ss
StepHypRef Expression
1 difss 3141 . 2 (𝐴𝐵) ⊆ 𝐴
2 unss1 3184 . 2 ((𝐴𝐵) ⊆ 𝐴 → ((𝐴𝐵) ∪ 𝐵) ⊆ (𝐴𝐵))
31, 2ax-mp 7 1 ((𝐴𝐵) ∪ 𝐵) ⊆ (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  cdif 3010  cun 3011  wss 3013
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 582  ax-in2 583  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-v 2635  df-dif 3015  df-un 3017  df-in 3019  df-ss 3026
This theorem is referenced by:  undif2ss  3377  pwundifss  4136
  Copyright terms: Public domain W3C validator