Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  undif1ss GIF version

Theorem undif1ss 3437
 Description: Absorption of difference by union. In classical logic, as Theorem 35 of [Suppes] p. 29, this would be equality rather than subset. (Contributed by Jim Kingdon, 4-Aug-2018.)
Assertion
Ref Expression
undif1ss ((𝐴𝐵) ∪ 𝐵) ⊆ (𝐴𝐵)

Proof of Theorem undif1ss
StepHypRef Expression
1 difss 3202 . 2 (𝐴𝐵) ⊆ 𝐴
2 unss1 3245 . 2 ((𝐴𝐵) ⊆ 𝐴 → ((𝐴𝐵) ∪ 𝐵) ⊆ (𝐴𝐵))
31, 2ax-mp 5 1 ((𝐴𝐵) ∪ 𝐵) ⊆ (𝐴𝐵)
 Colors of variables: wff set class Syntax hints:   ∖ cdif 3068   ∪ cun 3069   ⊆ wss 3071 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121 This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084 This theorem is referenced by:  undif2ss  3438  pwundifss  4207
 Copyright terms: Public domain W3C validator