Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > undif1ss | GIF version |
Description: Absorption of difference by union. In classical logic, as Theorem 35 of [Suppes] p. 29, this would be equality rather than subset. (Contributed by Jim Kingdon, 4-Aug-2018.) |
Ref | Expression |
---|---|
undif1ss | ⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) ⊆ (𝐴 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 3248 | . 2 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
2 | unss1 3291 | . 2 ⊢ ((𝐴 ∖ 𝐵) ⊆ 𝐴 → ((𝐴 ∖ 𝐵) ∪ 𝐵) ⊆ (𝐴 ∪ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) ⊆ (𝐴 ∪ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ∖ cdif 3113 ∪ cun 3114 ⊆ wss 3116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 |
This theorem is referenced by: undif2ss 3484 pwundifss 4263 |
Copyright terms: Public domain | W3C validator |