![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > undif1ss | GIF version |
Description: Absorption of difference by union. In classical logic, as Theorem 35 of [Suppes] p. 29, this would be equality rather than subset. (Contributed by Jim Kingdon, 4-Aug-2018.) |
Ref | Expression |
---|---|
undif1ss | ⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) ⊆ (𝐴 ∪ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss 3141 | . 2 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
2 | unss1 3184 | . 2 ⊢ ((𝐴 ∖ 𝐵) ⊆ 𝐴 → ((𝐴 ∖ 𝐵) ∪ 𝐵) ⊆ (𝐴 ∪ 𝐵)) | |
3 | 1, 2 | ax-mp 7 | 1 ⊢ ((𝐴 ∖ 𝐵) ∪ 𝐵) ⊆ (𝐴 ∪ 𝐵) |
Colors of variables: wff set class |
Syntax hints: ∖ cdif 3010 ∪ cun 3011 ⊆ wss 3013 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 582 ax-in2 583 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-v 2635 df-dif 3015 df-un 3017 df-in 3019 df-ss 3026 |
This theorem is referenced by: undif2ss 3377 pwundifss 4136 |
Copyright terms: Public domain | W3C validator |