ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undif2ss Unicode version

Theorem undif2ss 3522
Description: Absorption of difference by union. In classical logic, as in Part of proof of Corollary 6K of [Enderton] p. 144, this would be equality rather than subset. (Contributed by Jim Kingdon, 4-Aug-2018.)
Assertion
Ref Expression
undif2ss  |-  ( A  u.  ( B  \  A ) )  C_  ( A  u.  B
)

Proof of Theorem undif2ss
StepHypRef Expression
1 undif1ss 3521 . 2  |-  ( ( B  \  A )  u.  A )  C_  ( B  u.  A
)
2 uncom 3303 . 2  |-  ( A  u.  ( B  \  A ) )  =  ( ( B  \  A )  u.  A
)
3 uncom 3303 . 2  |-  ( A  u.  B )  =  ( B  u.  A
)
41, 2, 33sstr4i 3220 1  |-  ( A  u.  ( B  \  A ) )  C_  ( A  u.  B
)
Colors of variables: wff set class
Syntax hints:    \ cdif 3150    u. cun 3151    C_ wss 3153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator