ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undif2ss Unicode version

Theorem undif2ss 3536
Description: Absorption of difference by union. In classical logic, as in Part of proof of Corollary 6K of [Enderton] p. 144, this would be equality rather than subset. (Contributed by Jim Kingdon, 4-Aug-2018.)
Assertion
Ref Expression
undif2ss  |-  ( A  u.  ( B  \  A ) )  C_  ( A  u.  B
)

Proof of Theorem undif2ss
StepHypRef Expression
1 undif1ss 3535 . 2  |-  ( ( B  \  A )  u.  A )  C_  ( B  u.  A
)
2 uncom 3317 . 2  |-  ( A  u.  ( B  \  A ) )  =  ( ( B  \  A )  u.  A
)
3 uncom 3317 . 2  |-  ( A  u.  B )  =  ( B  u.  A
)
41, 2, 33sstr4i 3234 1  |-  ( A  u.  ( B  \  A ) )  C_  ( A  u.  B
)
Colors of variables: wff set class
Syntax hints:    \ cdif 3163    u. cun 3164    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator