ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undif2ss Unicode version

Theorem undif2ss 3567
Description: Absorption of difference by union. In classical logic, as in Part of proof of Corollary 6K of [Enderton] p. 144, this would be equality rather than subset. (Contributed by Jim Kingdon, 4-Aug-2018.)
Assertion
Ref Expression
undif2ss  |-  ( A  u.  ( B  \  A ) )  C_  ( A  u.  B
)

Proof of Theorem undif2ss
StepHypRef Expression
1 undif1ss 3566 . 2  |-  ( ( B  \  A )  u.  A )  C_  ( B  u.  A
)
2 uncom 3348 . 2  |-  ( A  u.  ( B  \  A ) )  =  ( ( B  \  A )  u.  A
)
3 uncom 3348 . 2  |-  ( A  u.  B )  =  ( B  u.  A
)
41, 2, 33sstr4i 3265 1  |-  ( A  u.  ( B  \  A ) )  C_  ( A  u.  B
)
Colors of variables: wff set class
Syntax hints:    \ cdif 3194    u. cun 3195    C_ wss 3197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator