ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwundifss Unicode version

Theorem pwundifss 4320
Description: Break up the power class of a union into a union of smaller classes. (Contributed by Jim Kingdon, 30-Sep-2018.)
Assertion
Ref Expression
pwundifss  |-  ( ( ~P ( A  u.  B )  \  ~P A )  u.  ~P A )  C_  ~P ( A  u.  B
)

Proof of Theorem pwundifss
StepHypRef Expression
1 undif1ss 3525 . 2  |-  ( ( ~P ( A  u.  B )  \  ~P A )  u.  ~P A )  C_  ( ~P ( A  u.  B
)  u.  ~P A
)
2 pwunss 4318 . . . . 5  |-  ( ~P A  u.  ~P B
)  C_  ~P ( A  u.  B )
3 unss 3337 . . . . 5  |-  ( ( ~P A  C_  ~P ( A  u.  B
)  /\  ~P B  C_ 
~P ( A  u.  B ) )  <->  ( ~P A  u.  ~P B
)  C_  ~P ( A  u.  B )
)
42, 3mpbir 146 . . . 4  |-  ( ~P A  C_  ~P ( A  u.  B )  /\  ~P B  C_  ~P ( A  u.  B
) )
54simpli 111 . . 3  |-  ~P A  C_ 
~P ( A  u.  B )
6 ssequn2 3336 . . 3  |-  ( ~P A  C_  ~P ( A  u.  B )  <->  ( ~P ( A  u.  B )  u.  ~P A )  =  ~P ( A  u.  B
) )
75, 6mpbi 145 . 2  |-  ( ~P ( A  u.  B
)  u.  ~P A
)  =  ~P ( A  u.  B )
81, 7sseqtri 3217 1  |-  ( ( ~P ( A  u.  B )  \  ~P A )  u.  ~P A )  C_  ~P ( A  u.  B
)
Colors of variables: wff set class
Syntax hints:    /\ wa 104    = wceq 1364    \ cdif 3154    u. cun 3155    C_ wss 3157   ~Pcpw 3605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator