ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undif2ss GIF version

Theorem undif2ss 3484
Description: Absorption of difference by union. In classical logic, as in Part of proof of Corollary 6K of [Enderton] p. 144, this would be equality rather than subset. (Contributed by Jim Kingdon, 4-Aug-2018.)
Assertion
Ref Expression
undif2ss (𝐴 ∪ (𝐵𝐴)) ⊆ (𝐴𝐵)

Proof of Theorem undif2ss
StepHypRef Expression
1 undif1ss 3483 . 2 ((𝐵𝐴) ∪ 𝐴) ⊆ (𝐵𝐴)
2 uncom 3266 . 2 (𝐴 ∪ (𝐵𝐴)) = ((𝐵𝐴) ∪ 𝐴)
3 uncom 3266 . 2 (𝐴𝐵) = (𝐵𝐴)
41, 2, 33sstr4i 3183 1 (𝐴 ∪ (𝐵𝐴)) ⊆ (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  cdif 3113  cun 3114  wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator