ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undif2ss GIF version

Theorem undif2ss 3535
Description: Absorption of difference by union. In classical logic, as in Part of proof of Corollary 6K of [Enderton] p. 144, this would be equality rather than subset. (Contributed by Jim Kingdon, 4-Aug-2018.)
Assertion
Ref Expression
undif2ss (𝐴 ∪ (𝐵𝐴)) ⊆ (𝐴𝐵)

Proof of Theorem undif2ss
StepHypRef Expression
1 undif1ss 3534 . 2 ((𝐵𝐴) ∪ 𝐴) ⊆ (𝐵𝐴)
2 uncom 3316 . 2 (𝐴 ∪ (𝐵𝐴)) = ((𝐵𝐴) ∪ 𝐴)
3 uncom 3316 . 2 (𝐴𝐵) = (𝐵𝐴)
41, 2, 33sstr4i 3233 1 (𝐴 ∪ (𝐵𝐴)) ⊆ (𝐴𝐵)
Colors of variables: wff set class
Syntax hints:  cdif 3162  cun 3163  wss 3165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator