| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uncom | Unicode version | ||
| Description: Commutative law for union of classes. Exercise 6 of [TakeutiZaring] p. 17. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| uncom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcom 729 |
. . 3
| |
| 2 | elun 3305 |
. . 3
| |
| 3 | 1, 2 | bitr4i 187 |
. 2
|
| 4 | 3 | uneqri 3306 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 |
| This theorem is referenced by: equncom 3309 uneq2 3312 un12 3322 un23 3323 ssun2 3328 unss2 3335 ssequn2 3337 undir 3414 dif32 3427 undif2ss 3527 uneqdifeqim 3537 prcom 3699 tpass 3719 prprc1 3731 difsnss 3769 exmid1stab 4242 suc0 4447 fvun2 5631 fmptpr 5757 fvsnun2 5763 fsnunfv 5766 omv2 6532 phplem2 6923 undifdc 6994 endjusym 7171 fzsuc2 10171 fseq1p1m1 10186 xnn0nnen 10546 ennnfonelem1 12649 setsslid 12754 lgsquadlem2 15403 |
| Copyright terms: Public domain | W3C validator |