| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > uncom | Unicode version | ||
| Description: Commutative law for union of classes. Exercise 6 of [TakeutiZaring] p. 17. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| uncom | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | orcom 729 | 
. . 3
 | |
| 2 | elun 3304 | 
. . 3
 | |
| 3 | 1, 2 | bitr4i 187 | 
. 2
 | 
| 4 | 3 | uneqri 3305 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 df-un 3161 | 
| This theorem is referenced by: equncom 3308 uneq2 3311 un12 3321 un23 3322 ssun2 3327 unss2 3334 ssequn2 3336 undir 3413 dif32 3426 undif2ss 3526 uneqdifeqim 3536 prcom 3698 tpass 3718 prprc1 3730 difsnss 3768 exmid1stab 4241 suc0 4446 fvun2 5628 fmptpr 5754 fvsnun2 5760 fsnunfv 5763 omv2 6523 phplem2 6914 undifdc 6985 endjusym 7162 fzsuc2 10154 fseq1p1m1 10169 xnn0nnen 10529 ennnfonelem1 12624 setsslid 12729 lgsquadlem2 15319 | 
| Copyright terms: Public domain | W3C validator |