ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uncom Unicode version

Theorem uncom 3266
Description: Commutative law for union of classes. Exercise 6 of [TakeutiZaring] p. 17. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
uncom  |-  ( A  u.  B )  =  ( B  u.  A
)

Proof of Theorem uncom
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 orcom 718 . . 3  |-  ( ( x  e.  A  \/  x  e.  B )  <->  ( x  e.  B  \/  x  e.  A )
)
2 elun 3263 . . 3  |-  ( x  e.  ( B  u.  A )  <->  ( x  e.  B  \/  x  e.  A ) )
31, 2bitr4i 186 . 2  |-  ( ( x  e.  A  \/  x  e.  B )  <->  x  e.  ( B  u.  A ) )
43uneqri 3264 1  |-  ( A  u.  B )  =  ( B  u.  A
)
Colors of variables: wff set class
Syntax hints:    \/ wo 698    = wceq 1343    e. wcel 2136    u. cun 3114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-un 3120
This theorem is referenced by:  equncom  3267  uneq2  3270  un12  3280  un23  3281  ssun2  3286  unss2  3293  ssequn2  3295  undir  3372  dif32  3385  undif2ss  3484  uneqdifeqim  3494  prcom  3652  tpass  3672  prprc1  3684  difsnss  3719  suc0  4389  fvun2  5553  fmptpr  5677  fvsnun2  5683  fsnunfv  5686  omv2  6433  phplem2  6819  undifdc  6889  endjusym  7061  fzsuc2  10014  fseq1p1m1  10029  ennnfonelem1  12340  setsslid  12444  exmid1stab  13880
  Copyright terms: Public domain W3C validator