| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uncom | Unicode version | ||
| Description: Commutative law for union of classes. Exercise 6 of [TakeutiZaring] p. 17. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| uncom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcom 730 |
. . 3
| |
| 2 | elun 3322 |
. . 3
| |
| 3 | 1, 2 | bitr4i 187 |
. 2
|
| 4 | 3 | uneqri 3323 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-un 3178 |
| This theorem is referenced by: equncom 3326 uneq2 3329 un12 3339 un23 3340 ssun2 3345 unss2 3352 ssequn2 3354 undir 3431 dif32 3444 undif2ss 3544 uneqdifeqim 3554 prcom 3719 tpass 3739 prprc1 3751 difsnss 3790 exmid1stab 4268 suc0 4476 fununfun 5336 fvun2 5669 fmptpr 5799 fvsnun2 5805 fsnunfv 5808 omv2 6574 phplem2 6975 undifdc 7047 endjusym 7224 fzsuc2 10236 fseq1p1m1 10251 xnn0nnen 10619 ennnfonelem1 12893 setsslid 12998 lgsquadlem2 15670 |
| Copyright terms: Public domain | W3C validator |