| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > uncom | Unicode version | ||
| Description: Commutative law for union of classes. Exercise 6 of [TakeutiZaring] p. 17. (Contributed by NM, 25-Jun-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| uncom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcom 730 |
. . 3
| |
| 2 | elun 3314 |
. . 3
| |
| 3 | 1, 2 | bitr4i 187 |
. 2
|
| 4 | 3 | uneqri 3315 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-v 2774 df-un 3170 |
| This theorem is referenced by: equncom 3318 uneq2 3321 un12 3331 un23 3332 ssun2 3337 unss2 3344 ssequn2 3346 undir 3423 dif32 3436 undif2ss 3536 uneqdifeqim 3546 prcom 3709 tpass 3729 prprc1 3741 difsnss 3779 exmid1stab 4253 suc0 4459 fununfun 5318 fvun2 5648 fmptpr 5778 fvsnun2 5784 fsnunfv 5787 omv2 6553 phplem2 6952 undifdc 7023 endjusym 7200 fzsuc2 10203 fseq1p1m1 10218 xnn0nnen 10584 ennnfonelem1 12811 setsslid 12916 lgsquadlem2 15588 |
| Copyright terms: Public domain | W3C validator |