ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undifabs Unicode version

Theorem undifabs 3536
Description: Absorption of difference by union. (Contributed by NM, 18-Aug-2013.)
Assertion
Ref Expression
undifabs  |-  ( A  u.  ( A  \  B ) )  =  A

Proof of Theorem undifabs
StepHypRef Expression
1 ssid 3212 . . 3  |-  A  C_  A
2 difss 3298 . . 3  |-  ( A 
\  B )  C_  A
31, 2unssi 3347 . 2  |-  ( A  u.  ( A  \  B ) )  C_  A
4 ssun1 3335 . 2  |-  A  C_  ( A  u.  ( A  \  B ) )
53, 4eqssi 3208 1  |-  ( A  u.  ( A  \  B ) )  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1372    \ cdif 3162    u. cun 3163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178
This theorem is referenced by:  exmid1stab  4251
  Copyright terms: Public domain W3C validator