ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undifabs Unicode version

Theorem undifabs 3541
Description: Absorption of difference by union. (Contributed by NM, 18-Aug-2013.)
Assertion
Ref Expression
undifabs  |-  ( A  u.  ( A  \  B ) )  =  A

Proof of Theorem undifabs
StepHypRef Expression
1 ssid 3217 . . 3  |-  A  C_  A
2 difss 3303 . . 3  |-  ( A 
\  B )  C_  A
31, 2unssi 3352 . 2  |-  ( A  u.  ( A  \  B ) )  C_  A
4 ssun1 3340 . 2  |-  A  C_  ( A  u.  ( A  \  B ) )
53, 4eqssi 3213 1  |-  ( A  u.  ( A  \  B ) )  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1373    \ cdif 3167    u. cun 3168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183
This theorem is referenced by:  exmid1stab  4260
  Copyright terms: Public domain W3C validator