ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undifabs Unicode version

Theorem undifabs 3523
Description: Absorption of difference by union. (Contributed by NM, 18-Aug-2013.)
Assertion
Ref Expression
undifabs  |-  ( A  u.  ( A  \  B ) )  =  A

Proof of Theorem undifabs
StepHypRef Expression
1 ssid 3199 . . 3  |-  A  C_  A
2 difss 3285 . . 3  |-  ( A 
\  B )  C_  A
31, 2unssi 3334 . 2  |-  ( A  u.  ( A  \  B ) )  C_  A
4 ssun1 3322 . 2  |-  A  C_  ( A  u.  ( A  \  B ) )
53, 4eqssi 3195 1  |-  ( A  u.  ( A  \  B ) )  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1364    \ cdif 3150    u. cun 3151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166
This theorem is referenced by:  exmid1stab  4237
  Copyright terms: Public domain W3C validator