ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unissel Unicode version

Theorem unissel 3879
Description: Condition turning a subclass relationship for union into an equality. (Contributed by NM, 18-Jul-2006.)
Assertion
Ref Expression
unissel  |-  ( ( U. A  C_  B  /\  B  e.  A
)  ->  U. A  =  B )

Proof of Theorem unissel
StepHypRef Expression
1 simpl 109 . 2  |-  ( ( U. A  C_  B  /\  B  e.  A
)  ->  U. A  C_  B )
2 elssuni 3878 . . 3  |-  ( B  e.  A  ->  B  C_ 
U. A )
32adantl 277 . 2  |-  ( ( U. A  C_  B  /\  B  e.  A
)  ->  B  C_  U. A
)
41, 3eqssd 3210 1  |-  ( ( U. A  C_  B  /\  B  e.  A
)  ->  U. A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176    C_ wss 3166   U.cuni 3850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774  df-in 3172  df-ss 3179  df-uni 3851
This theorem is referenced by:  elpwuni  4017
  Copyright terms: Public domain W3C validator