ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unissel Unicode version

Theorem unissel 3801
Description: Condition turning a subclass relationship for union into an equality. (Contributed by NM, 18-Jul-2006.)
Assertion
Ref Expression
unissel  |-  ( ( U. A  C_  B  /\  B  e.  A
)  ->  U. A  =  B )

Proof of Theorem unissel
StepHypRef Expression
1 simpl 108 . 2  |-  ( ( U. A  C_  B  /\  B  e.  A
)  ->  U. A  C_  B )
2 elssuni 3800 . . 3  |-  ( B  e.  A  ->  B  C_ 
U. A )
32adantl 275 . 2  |-  ( ( U. A  C_  B  /\  B  e.  A
)  ->  B  C_  U. A
)
41, 3eqssd 3145 1  |-  ( ( U. A  C_  B  /\  B  e.  A
)  ->  U. A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335    e. wcel 2128    C_ wss 3102   U.cuni 3772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-tru 1338  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-v 2714  df-in 3108  df-ss 3115  df-uni 3773
This theorem is referenced by:  elpwuni  3938
  Copyright terms: Public domain W3C validator