ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unissel Unicode version

Theorem unissel 3864
Description: Condition turning a subclass relationship for union into an equality. (Contributed by NM, 18-Jul-2006.)
Assertion
Ref Expression
unissel  |-  ( ( U. A  C_  B  /\  B  e.  A
)  ->  U. A  =  B )

Proof of Theorem unissel
StepHypRef Expression
1 simpl 109 . 2  |-  ( ( U. A  C_  B  /\  B  e.  A
)  ->  U. A  C_  B )
2 elssuni 3863 . . 3  |-  ( B  e.  A  ->  B  C_ 
U. A )
32adantl 277 . 2  |-  ( ( U. A  C_  B  /\  B  e.  A
)  ->  B  C_  U. A
)
41, 3eqssd 3196 1  |-  ( ( U. A  C_  B  /\  B  e.  A
)  ->  U. A  =  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164    C_ wss 3153   U.cuni 3835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-v 2762  df-in 3159  df-ss 3166  df-uni 3836
This theorem is referenced by:  elpwuni  4002
  Copyright terms: Public domain W3C validator