ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elpwuni Unicode version

Theorem elpwuni 4006
Description: Relationship for power class and union. (Contributed by NM, 18-Jul-2006.)
Assertion
Ref Expression
elpwuni  |-  ( B  e.  A  ->  ( A  C_  ~P B  <->  U. A  =  B ) )

Proof of Theorem elpwuni
StepHypRef Expression
1 sspwuni 4001 . 2  |-  ( A 
C_  ~P B  <->  U. A  C_  B )
2 unissel 3868 . . . 4  |-  ( ( U. A  C_  B  /\  B  e.  A
)  ->  U. A  =  B )
32expcom 116 . . 3  |-  ( B  e.  A  ->  ( U. A  C_  B  ->  U. A  =  B
) )
4 eqimss 3237 . . 3  |-  ( U. A  =  B  ->  U. A  C_  B )
53, 4impbid1 142 . 2  |-  ( B  e.  A  ->  ( U. A  C_  B  <->  U. A  =  B ) )
61, 5bitrid 192 1  |-  ( B  e.  A  ->  ( A  C_  ~P B  <->  U. A  =  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1364    e. wcel 2167    C_ wss 3157   ~Pcpw 3605   U.cuni 3839
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-v 2765  df-in 3163  df-ss 3170  df-pw 3607  df-uni 3840
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator