Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unissel | GIF version |
Description: Condition turning a subclass relationship for union into an equality. (Contributed by NM, 18-Jul-2006.) |
Ref | Expression |
---|---|
unissel | ⊢ ((∪ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐴) → ∪ 𝐴 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . 2 ⊢ ((∪ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐴) → ∪ 𝐴 ⊆ 𝐵) | |
2 | elssuni 3800 | . . 3 ⊢ (𝐵 ∈ 𝐴 → 𝐵 ⊆ ∪ 𝐴) | |
3 | 2 | adantl 275 | . 2 ⊢ ((∪ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐴) → 𝐵 ⊆ ∪ 𝐴) |
4 | 1, 3 | eqssd 3145 | 1 ⊢ ((∪ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐴) → ∪ 𝐴 = 𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1335 ∈ wcel 2128 ⊆ wss 3102 ∪ cuni 3772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-v 2714 df-in 3108 df-ss 3115 df-uni 3773 |
This theorem is referenced by: elpwuni 3938 |
Copyright terms: Public domain | W3C validator |