ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unissel GIF version

Theorem unissel 3878
Description: Condition turning a subclass relationship for union into an equality. (Contributed by NM, 18-Jul-2006.)
Assertion
Ref Expression
unissel (( 𝐴𝐵𝐵𝐴) → 𝐴 = 𝐵)

Proof of Theorem unissel
StepHypRef Expression
1 simpl 109 . 2 (( 𝐴𝐵𝐵𝐴) → 𝐴𝐵)
2 elssuni 3877 . . 3 (𝐵𝐴𝐵 𝐴)
32adantl 277 . 2 (( 𝐴𝐵𝐵𝐴) → 𝐵 𝐴)
41, 3eqssd 3209 1 (( 𝐴𝐵𝐵𝐴) → 𝐴 = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1372  wcel 2175  wss 3165   cuni 3849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-v 2773  df-in 3171  df-ss 3178  df-uni 3850
This theorem is referenced by:  elpwuni  4016
  Copyright terms: Public domain W3C validator