![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > eqssd | Unicode version |
Description: Equality deduction from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 27-Jun-2004.) |
Ref | Expression |
---|---|
eqssd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
eqssd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
eqssd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqssd.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eqssd.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | eqss 3195 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | sylanbrc 417 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 |
This theorem is referenced by: eqrd 3198 eqelssd 3199 unissel 3865 intmin 3891 int0el 3901 pwntru 4229 exmidundif 4236 exmidundifim 4237 dmcosseq 4934 relfld 5195 imadif 5335 imain 5337 fimacnv 5688 fo2ndf 6282 tposeq 6302 tfrlemibfn 6383 tfrlemi14d 6388 tfr1onlembfn 6399 tfri1dALT 6406 tfrcllembfn 6412 dcdifsnid 6559 fisbth 6941 en2eqpr 6965 exmidpw 6966 exmidpweq 6967 undifdcss 6981 nnnninfeq2 7190 en2other2 7258 exmidontriimlem3 7285 addnqpr 7623 mulnqpr 7639 distrprg 7650 ltexpri 7675 addcanprg 7678 recexprlemex 7699 aptipr 7703 cauappcvgprlemladd 7720 fzopth 10130 fzosplit 10247 fzouzsplit 10249 frecuzrdgtcl 10486 frecuzrdgdomlem 10491 zsupssdc 12094 phimullem 12366 structcnvcnv 12637 imasaddfnlemg 12900 gsumvallem2 13068 trivsubgd 13273 trivsubgsnd 13274 trivnsgd 13290 kerf1ghm 13347 conjnmz 13352 lspun 13901 lspsn 13915 lspsnneg 13919 lsp0 13922 lsslsp 13928 mulgrhm2 14109 znrrg 14159 eltg4i 14234 unitg 14241 tgtop 14247 tgidm 14253 basgen 14259 2basgeng 14261 epttop 14269 ntrin 14303 isopn3 14304 neiuni 14340 tgrest 14348 resttopon 14350 rest0 14358 txdis 14456 hmeontr 14492 xmettx 14689 findset 15507 pwtrufal 15558 pwf1oexmid 15560 |
Copyright terms: Public domain | W3C validator |