| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eqssd | Unicode version | ||
| Description: Equality deduction from two subclass relationships. Compare Theorem 4 of [Suppes] p. 22. (Contributed by NM, 27-Jun-2004.) |
| Ref | Expression |
|---|---|
| eqssd.1 |
|
| eqssd.2 |
|
| Ref | Expression |
|---|---|
| eqssd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqssd.1 |
. 2
| |
| 2 | eqssd.2 |
. 2
| |
| 3 | eqss 3239 |
. 2
| |
| 4 | 1, 2, 3 | sylanbrc 417 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: eqrd 3242 eqelssd 3243 unissel 3917 intmin 3943 int0el 3953 pwntru 4283 exmidundif 4290 exmidundifim 4291 dmcosseq 4996 relfld 5257 imadif 5401 imain 5403 fimacnv 5764 fo2ndf 6373 tposeq 6393 tfrlemibfn 6474 tfrlemi14d 6479 tfr1onlembfn 6490 tfri1dALT 6497 tfrcllembfn 6503 dcdifsnid 6650 fisbth 7045 en2eqpr 7069 exmidpw 7070 exmidpweq 7071 undifdcss 7085 nnnninfeq2 7296 en2other2 7374 exmidontriimlem3 7405 pw1m 7409 addnqpr 7748 mulnqpr 7764 distrprg 7775 ltexpri 7800 addcanprg 7803 recexprlemex 7824 aptipr 7828 cauappcvgprlemladd 7845 fzopth 10257 fzosplit 10375 fzouzsplit 10377 zsupssdc 10458 frecuzrdgtcl 10634 frecuzrdgdomlem 10639 ccatrn 11144 phimullem 12747 structcnvcnv 13048 imasaddfnlemg 13347 gsumvallem2 13526 trivsubgd 13737 trivsubgsnd 13738 trivnsgd 13754 kerf1ghm 13811 conjnmz 13816 lspun 14366 lspsn 14380 lspsnneg 14384 lsp0 14387 lsslsp 14393 mulgrhm2 14574 znrrg 14624 eltg4i 14729 unitg 14736 tgtop 14742 tgidm 14748 basgen 14754 2basgeng 14756 epttop 14764 ntrin 14798 isopn3 14799 neiuni 14835 tgrest 14843 resttopon 14845 rest0 14853 txdis 14951 hmeontr 14987 xmettx 15184 findset 16308 pwtrufal 16363 pwf1oexmid 16365 |
| Copyright terms: Public domain | W3C validator |