Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unissb | Unicode version |
Description: Relationship involving membership, subset, and union. Exercise 5 of [Enderton] p. 26 and its converse. (Contributed by NM, 20-Sep-2003.) |
Ref | Expression |
---|---|
unissb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni 3792 | . . . . . 6 | |
2 | 1 | imbi1i 237 | . . . . 5 |
3 | 19.23v 1871 | . . . . 5 | |
4 | 2, 3 | bitr4i 186 | . . . 4 |
5 | 4 | albii 1458 | . . 3 |
6 | alcom 1466 | . . . 4 | |
7 | 19.21v 1861 | . . . . . 6 | |
8 | impexp 261 | . . . . . . . 8 | |
9 | bi2.04 247 | . . . . . . . 8 | |
10 | 8, 9 | bitri 183 | . . . . . . 7 |
11 | 10 | albii 1458 | . . . . . 6 |
12 | dfss2 3131 | . . . . . . 7 | |
13 | 12 | imbi2i 225 | . . . . . 6 |
14 | 7, 11, 13 | 3bitr4i 211 | . . . . 5 |
15 | 14 | albii 1458 | . . . 4 |
16 | 6, 15 | bitri 183 | . . 3 |
17 | 5, 16 | bitri 183 | . 2 |
18 | dfss2 3131 | . 2 | |
19 | df-ral 2449 | . 2 | |
20 | 17, 18, 19 | 3bitr4i 211 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1341 wex 1480 wcel 2136 wral 2444 wss 3116 cuni 3789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-ext 2147 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-v 2728 df-in 3122 df-ss 3129 df-uni 3790 |
This theorem is referenced by: uniss2 3820 ssunieq 3822 sspwuni 3950 pwssb 3951 bm2.5ii 4473 sbthlem1 6922 neipsm 12794 neiuni 12801 |
Copyright terms: Public domain | W3C validator |