| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unissb | Unicode version | ||
| Description: Relationship involving membership, subset, and union. Exercise 5 of [Enderton] p. 26 and its converse. (Contributed by NM, 20-Sep-2003.) |
| Ref | Expression |
|---|---|
| unissb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni 3853 |
. . . . . 6
| |
| 2 | 1 | imbi1i 238 |
. . . . 5
|
| 3 | 19.23v 1906 |
. . . . 5
| |
| 4 | 2, 3 | bitr4i 187 |
. . . 4
|
| 5 | 4 | albii 1493 |
. . 3
|
| 6 | alcom 1501 |
. . . 4
| |
| 7 | 19.21v 1896 |
. . . . . 6
| |
| 8 | impexp 263 |
. . . . . . . 8
| |
| 9 | bi2.04 248 |
. . . . . . . 8
| |
| 10 | 8, 9 | bitri 184 |
. . . . . . 7
|
| 11 | 10 | albii 1493 |
. . . . . 6
|
| 12 | ssalel 3181 |
. . . . . . 7
| |
| 13 | 12 | imbi2i 226 |
. . . . . 6
|
| 14 | 7, 11, 13 | 3bitr4i 212 |
. . . . 5
|
| 15 | 14 | albii 1493 |
. . . 4
|
| 16 | 6, 15 | bitri 184 |
. . 3
|
| 17 | 5, 16 | bitri 184 |
. 2
|
| 18 | ssalel 3181 |
. 2
| |
| 19 | df-ral 2489 |
. 2
| |
| 20 | 17, 18, 19 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-v 2774 df-in 3172 df-ss 3179 df-uni 3851 |
| This theorem is referenced by: uniss2 3881 ssunieq 3883 sspwuni 4012 pwssb 4013 bm2.5ii 4544 sbthlem1 7059 subgintm 13534 neipsm 14626 neiuni 14633 |
| Copyright terms: Public domain | W3C validator |