| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > unissb | Unicode version | ||
| Description: Relationship involving membership, subset, and union. Exercise 5 of [Enderton] p. 26 and its converse. (Contributed by NM, 20-Sep-2003.) |
| Ref | Expression |
|---|---|
| unissb |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluni 3891 |
. . . . . 6
| |
| 2 | 1 | imbi1i 238 |
. . . . 5
|
| 3 | 19.23v 1929 |
. . . . 5
| |
| 4 | 2, 3 | bitr4i 187 |
. . . 4
|
| 5 | 4 | albii 1516 |
. . 3
|
| 6 | alcom 1524 |
. . . 4
| |
| 7 | 19.21v 1919 |
. . . . . 6
| |
| 8 | impexp 263 |
. . . . . . . 8
| |
| 9 | bi2.04 248 |
. . . . . . . 8
| |
| 10 | 8, 9 | bitri 184 |
. . . . . . 7
|
| 11 | 10 | albii 1516 |
. . . . . 6
|
| 12 | ssalel 3212 |
. . . . . . 7
| |
| 13 | 12 | imbi2i 226 |
. . . . . 6
|
| 14 | 7, 11, 13 | 3bitr4i 212 |
. . . . 5
|
| 15 | 14 | albii 1516 |
. . . 4
|
| 16 | 6, 15 | bitri 184 |
. . 3
|
| 17 | 5, 16 | bitri 184 |
. 2
|
| 18 | ssalel 3212 |
. 2
| |
| 19 | df-ral 2513 |
. 2
| |
| 20 | 17, 18, 19 | 3bitr4i 212 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-v 2801 df-in 3203 df-ss 3210 df-uni 3889 |
| This theorem is referenced by: uniss2 3919 ssunieq 3921 sspwuni 4050 pwssb 4051 bm2.5ii 4588 sbthlem1 7124 subgintm 13735 neipsm 14828 neiuni 14835 |
| Copyright terms: Public domain | W3C validator |