ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  unissb Unicode version

Theorem unissb 3761
Description: Relationship involving membership, subset, and union. Exercise 5 of [Enderton] p. 26 and its converse. (Contributed by NM, 20-Sep-2003.)
Assertion
Ref Expression
unissb  |-  ( U. A  C_  B  <->  A. x  e.  A  x  C_  B
)
Distinct variable groups:    x, A    x, B

Proof of Theorem unissb
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 eluni 3734 . . . . . 6  |-  ( y  e.  U. A  <->  E. x
( y  e.  x  /\  x  e.  A
) )
21imbi1i 237 . . . . 5  |-  ( ( y  e.  U. A  ->  y  e.  B )  <-> 
( E. x ( y  e.  x  /\  x  e.  A )  ->  y  e.  B ) )
3 19.23v 1855 . . . . 5  |-  ( A. x ( ( y  e.  x  /\  x  e.  A )  ->  y  e.  B )  <->  ( E. x ( y  e.  x  /\  x  e.  A )  ->  y  e.  B ) )
42, 3bitr4i 186 . . . 4  |-  ( ( y  e.  U. A  ->  y  e.  B )  <->  A. x ( ( y  e.  x  /\  x  e.  A )  ->  y  e.  B ) )
54albii 1446 . . 3  |-  ( A. y ( y  e. 
U. A  ->  y  e.  B )  <->  A. y A. x ( ( y  e.  x  /\  x  e.  A )  ->  y  e.  B ) )
6 alcom 1454 . . . 4  |-  ( A. y A. x ( ( y  e.  x  /\  x  e.  A )  ->  y  e.  B )  <->  A. x A. y ( ( y  e.  x  /\  x  e.  A
)  ->  y  e.  B ) )
7 19.21v 1845 . . . . . 6  |-  ( A. y ( x  e.  A  ->  ( y  e.  x  ->  y  e.  B ) )  <->  ( x  e.  A  ->  A. y
( y  e.  x  ->  y  e.  B ) ) )
8 impexp 261 . . . . . . . 8  |-  ( ( ( y  e.  x  /\  x  e.  A
)  ->  y  e.  B )  <->  ( y  e.  x  ->  ( x  e.  A  ->  y  e.  B ) ) )
9 bi2.04 247 . . . . . . . 8  |-  ( ( y  e.  x  -> 
( x  e.  A  ->  y  e.  B ) )  <->  ( x  e.  A  ->  ( y  e.  x  ->  y  e.  B ) ) )
108, 9bitri 183 . . . . . . 7  |-  ( ( ( y  e.  x  /\  x  e.  A
)  ->  y  e.  B )  <->  ( x  e.  A  ->  ( y  e.  x  ->  y  e.  B ) ) )
1110albii 1446 . . . . . 6  |-  ( A. y ( ( y  e.  x  /\  x  e.  A )  ->  y  e.  B )  <->  A. y
( x  e.  A  ->  ( y  e.  x  ->  y  e.  B ) ) )
12 dfss2 3081 . . . . . . 7  |-  ( x 
C_  B  <->  A. y
( y  e.  x  ->  y  e.  B ) )
1312imbi2i 225 . . . . . 6  |-  ( ( x  e.  A  ->  x  C_  B )  <->  ( x  e.  A  ->  A. y
( y  e.  x  ->  y  e.  B ) ) )
147, 11, 133bitr4i 211 . . . . 5  |-  ( A. y ( ( y  e.  x  /\  x  e.  A )  ->  y  e.  B )  <->  ( x  e.  A  ->  x  C_  B ) )
1514albii 1446 . . . 4  |-  ( A. x A. y ( ( y  e.  x  /\  x  e.  A )  ->  y  e.  B )  <->  A. x ( x  e.  A  ->  x  C_  B
) )
166, 15bitri 183 . . 3  |-  ( A. y A. x ( ( y  e.  x  /\  x  e.  A )  ->  y  e.  B )  <->  A. x ( x  e.  A  ->  x  C_  B
) )
175, 16bitri 183 . 2  |-  ( A. y ( y  e. 
U. A  ->  y  e.  B )  <->  A. x
( x  e.  A  ->  x  C_  B )
)
18 dfss2 3081 . 2  |-  ( U. A  C_  B  <->  A. y
( y  e.  U. A  ->  y  e.  B
) )
19 df-ral 2419 . 2  |-  ( A. x  e.  A  x  C_  B  <->  A. x ( x  e.  A  ->  x  C_  B ) )
2017, 18, 193bitr4i 211 1  |-  ( U. A  C_  B  <->  A. x  e.  A  x  C_  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1329   E.wex 1468    e. wcel 1480   A.wral 2414    C_ wss 3066   U.cuni 3731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-v 2683  df-in 3072  df-ss 3079  df-uni 3732
This theorem is referenced by:  uniss2  3762  ssunieq  3764  sspwuni  3892  pwssb  3893  bm2.5ii  4407  sbthlem1  6838  neipsm  12312  neiuni  12319
  Copyright terms: Public domain W3C validator