Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > unissb | Unicode version |
Description: Relationship involving membership, subset, and union. Exercise 5 of [Enderton] p. 26 and its converse. (Contributed by NM, 20-Sep-2003.) |
Ref | Expression |
---|---|
unissb |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluni 3799 | . . . . . 6 | |
2 | 1 | imbi1i 237 | . . . . 5 |
3 | 19.23v 1876 | . . . . 5 | |
4 | 2, 3 | bitr4i 186 | . . . 4 |
5 | 4 | albii 1463 | . . 3 |
6 | alcom 1471 | . . . 4 | |
7 | 19.21v 1866 | . . . . . 6 | |
8 | impexp 261 | . . . . . . . 8 | |
9 | bi2.04 247 | . . . . . . . 8 | |
10 | 8, 9 | bitri 183 | . . . . . . 7 |
11 | 10 | albii 1463 | . . . . . 6 |
12 | dfss2 3136 | . . . . . . 7 | |
13 | 12 | imbi2i 225 | . . . . . 6 |
14 | 7, 11, 13 | 3bitr4i 211 | . . . . 5 |
15 | 14 | albii 1463 | . . . 4 |
16 | 6, 15 | bitri 183 | . . 3 |
17 | 5, 16 | bitri 183 | . 2 |
18 | dfss2 3136 | . 2 | |
19 | df-ral 2453 | . 2 | |
20 | 17, 18, 19 | 3bitr4i 211 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wal 1346 wex 1485 wcel 2141 wral 2448 wss 3121 cuni 3796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-v 2732 df-in 3127 df-ss 3134 df-uni 3797 |
This theorem is referenced by: uniss2 3827 ssunieq 3829 sspwuni 3957 pwssb 3958 bm2.5ii 4480 sbthlem1 6934 neipsm 12948 neiuni 12955 |
Copyright terms: Public domain | W3C validator |