| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elssuni | Unicode version | ||
| Description: An element of a class is a subclass of its union. Theorem 8.6 of [Quine] p. 54. Also the basis for Proposition 7.20 of [TakeutiZaring] p. 40. (Contributed by NM, 6-Jun-1994.) |
| Ref | Expression |
|---|---|
| elssuni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3212 |
. 2
| |
| 2 | ssuni 3871 |
. 2
| |
| 3 | 1, 2 | mpan 424 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-in 3171 df-ss 3178 df-uni 3850 |
| This theorem is referenced by: unissel 3878 ssunieq 3882 pwuni 4235 pwel 4261 uniopel 4300 iunpw 4526 dmrnssfld 4940 iotaexab 5249 fvssunirng 5590 relfvssunirn 5591 sefvex 5596 riotaexg 5902 pwuninel2 6367 tfrlem9 6404 tfrexlem 6419 sbthlem1 7058 sbthlem2 7059 unirnioo 10094 eltopss 14452 toponss 14469 isbasis3g 14489 baspartn 14493 bastg 14504 tgcl 14507 epttop 14533 difopn 14551 ssntr 14565 isopn3 14568 isopn3i 14578 neiuni 14604 resttopon 14614 restopn2 14626 ssidcn 14653 lmtopcnp 14693 txuni2 14699 hmeoimaf1o 14757 tgioo 14997 bj-elssuniab 15689 |
| Copyright terms: Public domain | W3C validator |