![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > elssuni | Unicode version |
Description: An element of a class is a subclass of its union. Theorem 8.6 of [Quine] p. 54. Also the basis for Proposition 7.20 of [TakeutiZaring] p. 40. (Contributed by NM, 6-Jun-1994.) |
Ref | Expression |
---|---|
elssuni |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssid 3200 |
. 2
![]() ![]() ![]() ![]() | |
2 | ssuni 3858 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpan 424 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-v 2762 df-in 3160 df-ss 3167 df-uni 3837 |
This theorem is referenced by: unissel 3865 ssunieq 3869 pwuni 4222 pwel 4248 uniopel 4286 iunpw 4512 dmrnssfld 4926 iotaexab 5234 fvssunirng 5570 relfvssunirn 5571 sefvex 5576 riotaexg 5878 pwuninel2 6337 tfrlem9 6374 tfrexlem 6389 sbthlem1 7018 sbthlem2 7019 unirnioo 10042 eltopss 14188 toponss 14205 isbasis3g 14225 baspartn 14229 bastg 14240 tgcl 14243 epttop 14269 difopn 14287 ssntr 14301 isopn3 14304 isopn3i 14314 neiuni 14340 resttopon 14350 restopn2 14362 ssidcn 14389 lmtopcnp 14429 txuni2 14435 hmeoimaf1o 14493 tgioo 14733 bj-elssuniab 15353 |
Copyright terms: Public domain | W3C validator |