| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elssuni | Unicode version | ||
| Description: An element of a class is a subclass of its union. Theorem 8.6 of [Quine] p. 54. Also the basis for Proposition 7.20 of [TakeutiZaring] p. 40. (Contributed by NM, 6-Jun-1994.) |
| Ref | Expression |
|---|---|
| elssuni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3244 |
. 2
| |
| 2 | ssuni 3909 |
. 2
| |
| 3 | 1, 2 | mpan 424 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-in 3203 df-ss 3210 df-uni 3888 |
| This theorem is referenced by: unissel 3916 ssunieq 3920 pwuni 4275 pwel 4303 uniopel 4342 iunpw 4570 dmrnssfld 4986 iotaexab 5296 fvssunirng 5641 relfvssunirn 5642 sefvex 5647 riotaexg 5957 pwuninel2 6426 tfrlem9 6463 tfrexlem 6478 sbthlem1 7120 sbthlem2 7121 unirnioo 10165 eltopss 14677 toponss 14694 isbasis3g 14714 baspartn 14718 bastg 14729 tgcl 14732 epttop 14758 difopn 14776 ssntr 14790 isopn3 14793 isopn3i 14803 neiuni 14829 resttopon 14839 restopn2 14851 ssidcn 14878 lmtopcnp 14918 txuni2 14924 hmeoimaf1o 14982 tgioo 15222 bj-elssuniab 16113 |
| Copyright terms: Public domain | W3C validator |