| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elssuni | Unicode version | ||
| Description: An element of a class is a subclass of its union. Theorem 8.6 of [Quine] p. 54. Also the basis for Proposition 7.20 of [TakeutiZaring] p. 40. (Contributed by NM, 6-Jun-1994.) |
| Ref | Expression |
|---|---|
| elssuni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid 3221 |
. 2
| |
| 2 | ssuni 3886 |
. 2
| |
| 3 | 1, 2 | mpan 424 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-v 2778 df-in 3180 df-ss 3187 df-uni 3865 |
| This theorem is referenced by: unissel 3893 ssunieq 3897 pwuni 4252 pwel 4280 uniopel 4319 iunpw 4545 dmrnssfld 4960 iotaexab 5269 fvssunirng 5614 relfvssunirn 5615 sefvex 5620 riotaexg 5926 pwuninel2 6391 tfrlem9 6428 tfrexlem 6443 sbthlem1 7085 sbthlem2 7086 unirnioo 10130 eltopss 14596 toponss 14613 isbasis3g 14633 baspartn 14637 bastg 14648 tgcl 14651 epttop 14677 difopn 14695 ssntr 14709 isopn3 14712 isopn3i 14722 neiuni 14748 resttopon 14758 restopn2 14770 ssidcn 14797 lmtopcnp 14837 txuni2 14843 hmeoimaf1o 14901 tgioo 15141 bj-elssuniab 15927 |
| Copyright terms: Public domain | W3C validator |