ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  viin Unicode version

Theorem viin 3976
Description: Indexed intersection with a universal index class. (Contributed by NM, 11-Sep-2008.)
Assertion
Ref Expression
viin  |-  |^|_ x  e.  _V  A  =  {
y  |  A. x  y  e.  A }
Distinct variable groups:    x, y    y, A
Allowed substitution hint:    A( x)

Proof of Theorem viin
StepHypRef Expression
1 df-iin 3919 . 2  |-  |^|_ x  e.  _V  A  =  {
y  |  A. x  e.  _V  y  e.  A }
2 ralv 2780 . . 3  |-  ( A. x  e.  _V  y  e.  A  <->  A. x  y  e.  A )
32abbii 2312 . 2  |-  { y  |  A. x  e. 
_V  y  e.  A }  =  { y  |  A. x  y  e.  A }
41, 3eqtri 2217 1  |-  |^|_ x  e.  _V  A  =  {
y  |  A. x  y  e.  A }
Colors of variables: wff set class
Syntax hints:   A.wal 1362    = wceq 1364    e. wcel 2167   {cab 2182   A.wral 2475   _Vcvv 2763   |^|_ciin 3917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-ral 2480  df-v 2765  df-iin 3919
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator