ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  viin Unicode version

Theorem viin 3987
Description: Indexed intersection with a universal index class. (Contributed by NM, 11-Sep-2008.)
Assertion
Ref Expression
viin  |-  |^|_ x  e.  _V  A  =  {
y  |  A. x  y  e.  A }
Distinct variable groups:    x, y    y, A
Allowed substitution hint:    A( x)

Proof of Theorem viin
StepHypRef Expression
1 df-iin 3930 . 2  |-  |^|_ x  e.  _V  A  =  {
y  |  A. x  e.  _V  y  e.  A }
2 ralv 2789 . . 3  |-  ( A. x  e.  _V  y  e.  A  <->  A. x  y  e.  A )
32abbii 2321 . 2  |-  { y  |  A. x  e. 
_V  y  e.  A }  =  { y  |  A. x  y  e.  A }
41, 3eqtri 2226 1  |-  |^|_ x  e.  _V  A  =  {
y  |  A. x  y  e.  A }
Colors of variables: wff set class
Syntax hints:   A.wal 1371    = wceq 1373    e. wcel 2176   {cab 2191   A.wral 2484   _Vcvv 2772   |^|_ciin 3928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-ral 2489  df-v 2774  df-iin 3930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator