ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralv Unicode version

Theorem ralv 2650
Description: A universal quantifier restricted to the universe is unrestricted. (Contributed by NM, 26-Mar-2004.)
Assertion
Ref Expression
ralv  |-  ( A. x  e.  _V  ph  <->  A. x ph )

Proof of Theorem ralv
StepHypRef Expression
1 df-ral 2375 . 2  |-  ( A. x  e.  _V  ph  <->  A. x
( x  e.  _V  ->  ph ) )
2 vex 2636 . . . 4  |-  x  e. 
_V
32a1bi 242 . . 3  |-  ( ph  <->  ( x  e.  _V  ->  ph ) )
43albii 1411 . 2  |-  ( A. x ph  <->  A. x ( x  e.  _V  ->  ph )
)
51, 4bitr4i 186 1  |-  ( A. x  e.  _V  ph  <->  A. x ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104   A.wal 1294    e. wcel 1445   A.wral 2370   _Vcvv 2633
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1388  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-ral 2375  df-v 2635
This theorem is referenced by:  ralcom4  2655  viin  3811  issref  4847  frecrdg  6211
  Copyright terms: Public domain W3C validator