ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunn0m Unicode version

Theorem iunn0m 3977
Description: There is an inhabited class in an indexed collection  B ( x ) iff the indexed union of them is inhabited. (Contributed by Jim Kingdon, 16-Aug-2018.)
Assertion
Ref Expression
iunn0m  |-  ( E. x  e.  A  E. y  y  e.  B  <->  E. y  y  e.  U_ x  e.  A  B
)
Distinct variable groups:    x, y, A   
y, B
Allowed substitution hint:    B( x)

Proof of Theorem iunn0m
StepHypRef Expression
1 rexcom4 2786 . 2  |-  ( E. x  e.  A  E. y  y  e.  B  <->  E. y E. x  e.  A  y  e.  B
)
2 eliun 3920 . . 3  |-  ( y  e.  U_ x  e.  A  B  <->  E. x  e.  A  y  e.  B )
32exbii 1619 . 2  |-  ( E. y  y  e.  U_ x  e.  A  B  <->  E. y E. x  e.  A  y  e.  B
)
41, 3bitr4i 187 1  |-  ( E. x  e.  A  E. y  y  e.  B  <->  E. y  y  e.  U_ x  e.  A  B
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105   E.wex 1506    e. wcel 2167   E.wrex 2476   U_ciun 3916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-iun 3918
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator