ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iunn0m Unicode version

Theorem iunn0m 3926
Description: There is an inhabited class in an indexed collection  B ( x ) iff the indexed union of them is inhabited. (Contributed by Jim Kingdon, 16-Aug-2018.)
Assertion
Ref Expression
iunn0m  |-  ( E. x  e.  A  E. y  y  e.  B  <->  E. y  y  e.  U_ x  e.  A  B
)
Distinct variable groups:    x, y, A   
y, B
Allowed substitution hint:    B( x)

Proof of Theorem iunn0m
StepHypRef Expression
1 rexcom4 2749 . 2  |-  ( E. x  e.  A  E. y  y  e.  B  <->  E. y E. x  e.  A  y  e.  B
)
2 eliun 3870 . . 3  |-  ( y  e.  U_ x  e.  A  B  <->  E. x  e.  A  y  e.  B )
32exbii 1593 . 2  |-  ( E. y  y  e.  U_ x  e.  A  B  <->  E. y E. x  e.  A  y  e.  B
)
41, 3bitr4i 186 1  |-  ( E. x  e.  A  E. y  y  e.  B  <->  E. y  y  e.  U_ x  e.  A  B
)
Colors of variables: wff set class
Syntax hints:    <-> wb 104   E.wex 1480    e. wcel 2136   E.wrex 2445   U_ciun 3866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-iun 3868
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator