ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0iin Unicode version

Theorem 0iin 3971
Description: An empty indexed intersection is the universal class. (Contributed by NM, 20-Oct-2005.)
Assertion
Ref Expression
0iin  |-  |^|_ x  e.  (/)  A  =  _V

Proof of Theorem 0iin
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-iin 3915 . 2  |-  |^|_ x  e.  (/)  A  =  {
y  |  A. x  e.  (/)  y  e.  A }
2 vex 2763 . . . 4  |-  y  e. 
_V
3 ral0 3548 . . . 4  |-  A. x  e.  (/)  y  e.  A
42, 32th 174 . . 3  |-  ( y  e.  _V  <->  A. x  e.  (/)  y  e.  A
)
54abbi2i 2308 . 2  |-  _V  =  { y  |  A. x  e.  (/)  y  e.  A }
61, 5eqtr4i 2217 1  |-  |^|_ x  e.  (/)  A  =  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2164   {cab 2179   A.wral 2472   _Vcvv 2760   (/)c0 3446   |^|_ciin 3913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-v 2762  df-dif 3155  df-nul 3447  df-iin 3915
This theorem is referenced by:  riin0  3984  iin0r  4198
  Copyright terms: Public domain W3C validator