ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0iin Unicode version

Theorem 0iin 4000
Description: An empty indexed intersection is the universal class. (Contributed by NM, 20-Oct-2005.)
Assertion
Ref Expression
0iin  |-  |^|_ x  e.  (/)  A  =  _V

Proof of Theorem 0iin
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-iin 3944 . 2  |-  |^|_ x  e.  (/)  A  =  {
y  |  A. x  e.  (/)  y  e.  A }
2 vex 2779 . . . 4  |-  y  e. 
_V
3 ral0 3570 . . . 4  |-  A. x  e.  (/)  y  e.  A
42, 32th 174 . . 3  |-  ( y  e.  _V  <->  A. x  e.  (/)  y  e.  A
)
54abbi2i 2322 . 2  |-  _V  =  { y  |  A. x  e.  (/)  y  e.  A }
61, 5eqtr4i 2231 1  |-  |^|_ x  e.  (/)  A  =  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1373    e. wcel 2178   {cab 2193   A.wral 2486   _Vcvv 2776   (/)c0 3468   |^|_ciin 3942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-v 2778  df-dif 3176  df-nul 3469  df-iin 3944
This theorem is referenced by:  riin0  4013  iin0r  4229
  Copyright terms: Public domain W3C validator