ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0iin Unicode version

Theorem 0iin 4024
Description: An empty indexed intersection is the universal class. (Contributed by NM, 20-Oct-2005.)
Assertion
Ref Expression
0iin  |-  |^|_ x  e.  (/)  A  =  _V

Proof of Theorem 0iin
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-iin 3968 . 2  |-  |^|_ x  e.  (/)  A  =  {
y  |  A. x  e.  (/)  y  e.  A }
2 vex 2802 . . . 4  |-  y  e. 
_V
3 ral0 3593 . . . 4  |-  A. x  e.  (/)  y  e.  A
42, 32th 174 . . 3  |-  ( y  e.  _V  <->  A. x  e.  (/)  y  e.  A
)
54abbi2i 2344 . 2  |-  _V  =  { y  |  A. x  e.  (/)  y  e.  A }
61, 5eqtr4i 2253 1  |-  |^|_ x  e.  (/)  A  =  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1395    e. wcel 2200   {cab 2215   A.wral 2508   _Vcvv 2799   (/)c0 3491   |^|_ciin 3966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-dif 3199  df-nul 3492  df-iin 3968
This theorem is referenced by:  riin0  4037  iin0r  4253
  Copyright terms: Public domain W3C validator