ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0iin Unicode version

Theorem 0iin 3924
Description: An empty indexed intersection is the universal class. (Contributed by NM, 20-Oct-2005.)
Assertion
Ref Expression
0iin  |-  |^|_ x  e.  (/)  A  =  _V

Proof of Theorem 0iin
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 df-iin 3869 . 2  |-  |^|_ x  e.  (/)  A  =  {
y  |  A. x  e.  (/)  y  e.  A }
2 vex 2729 . . . 4  |-  y  e. 
_V
3 ral0 3510 . . . 4  |-  A. x  e.  (/)  y  e.  A
42, 32th 173 . . 3  |-  ( y  e.  _V  <->  A. x  e.  (/)  y  e.  A
)
54abbi2i 2281 . 2  |-  _V  =  { y  |  A. x  e.  (/)  y  e.  A }
61, 5eqtr4i 2189 1  |-  |^|_ x  e.  (/)  A  =  _V
Colors of variables: wff set class
Syntax hints:    = wceq 1343    e. wcel 2136   {cab 2151   A.wral 2444   _Vcvv 2726   (/)c0 3409   |^|_ciin 3867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-v 2728  df-dif 3118  df-nul 3410  df-iin 3869
This theorem is referenced by:  riin0  3937  iin0r  4148
  Copyright terms: Public domain W3C validator