![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > viin | GIF version |
Description: Indexed intersection with a universal index class. (Contributed by NM, 11-Sep-2008.) |
Ref | Expression |
---|---|
viin | ⊢ ∩ 𝑥 ∈ V 𝐴 = {𝑦 ∣ ∀𝑥 𝑦 ∈ 𝐴} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iin 3891 | . 2 ⊢ ∩ 𝑥 ∈ V 𝐴 = {𝑦 ∣ ∀𝑥 ∈ V 𝑦 ∈ 𝐴} | |
2 | ralv 2756 | . . 3 ⊢ (∀𝑥 ∈ V 𝑦 ∈ 𝐴 ↔ ∀𝑥 𝑦 ∈ 𝐴) | |
3 | 2 | abbii 2293 | . 2 ⊢ {𝑦 ∣ ∀𝑥 ∈ V 𝑦 ∈ 𝐴} = {𝑦 ∣ ∀𝑥 𝑦 ∈ 𝐴} |
4 | 1, 3 | eqtri 2198 | 1 ⊢ ∩ 𝑥 ∈ V 𝐴 = {𝑦 ∣ ∀𝑥 𝑦 ∈ 𝐴} |
Colors of variables: wff set class |
Syntax hints: ∀wal 1351 = wceq 1353 ∈ wcel 2148 {cab 2163 ∀wral 2455 Vcvv 2739 ∩ ciin 3889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-11 1506 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-tru 1356 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-ral 2460 df-v 2741 df-iin 3891 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |