ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  viin GIF version

Theorem viin 3987
Description: Indexed intersection with a universal index class. (Contributed by NM, 11-Sep-2008.)
Assertion
Ref Expression
viin 𝑥 ∈ V 𝐴 = {𝑦 ∣ ∀𝑥 𝑦𝐴}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem viin
StepHypRef Expression
1 df-iin 3930 . 2 𝑥 ∈ V 𝐴 = {𝑦 ∣ ∀𝑥 ∈ V 𝑦𝐴}
2 ralv 2789 . . 3 (∀𝑥 ∈ V 𝑦𝐴 ↔ ∀𝑥 𝑦𝐴)
32abbii 2321 . 2 {𝑦 ∣ ∀𝑥 ∈ V 𝑦𝐴} = {𝑦 ∣ ∀𝑥 𝑦𝐴}
41, 3eqtri 2226 1 𝑥 ∈ V 𝐴 = {𝑦 ∣ ∀𝑥 𝑦𝐴}
Colors of variables: wff set class
Syntax hints:  wal 1371   = wceq 1373  wcel 2176  {cab 2191  wral 2484  Vcvv 2772   ciin 3928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-ral 2489  df-v 2774  df-iin 3930
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator