| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > viin | GIF version | ||
| Description: Indexed intersection with a universal index class. (Contributed by NM, 11-Sep-2008.) |
| Ref | Expression |
|---|---|
| viin | ⊢ ∩ 𝑥 ∈ V 𝐴 = {𝑦 ∣ ∀𝑥 𝑦 ∈ 𝐴} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iin 3968 | . 2 ⊢ ∩ 𝑥 ∈ V 𝐴 = {𝑦 ∣ ∀𝑥 ∈ V 𝑦 ∈ 𝐴} | |
| 2 | ralv 2817 | . . 3 ⊢ (∀𝑥 ∈ V 𝑦 ∈ 𝐴 ↔ ∀𝑥 𝑦 ∈ 𝐴) | |
| 3 | 2 | abbii 2345 | . 2 ⊢ {𝑦 ∣ ∀𝑥 ∈ V 𝑦 ∈ 𝐴} = {𝑦 ∣ ∀𝑥 𝑦 ∈ 𝐴} |
| 4 | 1, 3 | eqtri 2250 | 1 ⊢ ∩ 𝑥 ∈ V 𝐴 = {𝑦 ∣ ∀𝑥 𝑦 ∈ 𝐴} |
| Colors of variables: wff set class |
| Syntax hints: ∀wal 1393 = wceq 1395 ∈ wcel 2200 {cab 2215 ∀wral 2508 Vcvv 2799 ∩ ciin 3966 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-ral 2513 df-v 2801 df-iin 3968 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |