![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > vtocl3 | Unicode version |
Description: Implicit substitution of classes for setvar variables. (Contributed by NM, 3-Jun-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
Ref | Expression |
---|---|
vtocl3.1 |
![]() ![]() ![]() ![]() |
vtocl3.2 |
![]() ![]() ![]() ![]() |
vtocl3.3 |
![]() ![]() ![]() ![]() |
vtocl3.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
vtocl3.5 |
![]() ![]() |
Ref | Expression |
---|---|
vtocl3 |
![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtocl3.1 |
. . . . . . 7
![]() ![]() ![]() ![]() | |
2 | 1 | isseti 2760 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() |
3 | vtocl3.2 |
. . . . . . 7
![]() ![]() ![]() ![]() | |
4 | 3 | isseti 2760 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() |
5 | vtocl3.3 |
. . . . . . 7
![]() ![]() ![]() ![]() | |
6 | 5 | isseti 2760 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() |
7 | eeeanv 1945 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | vtocl3.4 |
. . . . . . . . . 10
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
9 | 8 | biimpd 144 |
. . . . . . . . 9
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
10 | 9 | eximi 1611 |
. . . . . . . 8
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
11 | 10 | 2eximi 1612 |
. . . . . . 7
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
12 | 7, 11 | sylbir 135 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
13 | 2, 4, 6, 12 | mp3an 1348 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
14 | nfv 1539 |
. . . . . . 7
![]() ![]() ![]() ![]() | |
15 | 14 | 19.36-1 1684 |
. . . . . 6
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
16 | 15 | 2eximi 1612 |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
17 | 13, 16 | ax-mp 5 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
18 | nfv 1539 |
. . . . 5
![]() ![]() ![]() ![]() | |
19 | 18 | 19.36-1 1684 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
20 | 17, 19 | eximii 1613 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
21 | 20 | 19.36aiv 1913 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | vtocl3.5 |
. . 3
![]() ![]() | |
23 | 22 | gen2 1461 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
24 | 21, 23 | mpg 1462 |
1
![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-nf 1472 df-sb 1774 df-clab 2176 df-cleq 2182 df-clel 2185 df-v 2754 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |