ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtoclb Unicode version

Theorem vtoclb 2783
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 23-Dec-1993.)
Hypotheses
Ref Expression
vtoclb.1  |-  A  e. 
_V
vtoclb.2  |-  ( x  =  A  ->  ( ph 
<->  ch ) )
vtoclb.3  |-  ( x  =  A  ->  ( ps 
<->  th ) )
vtoclb.4  |-  ( ph  <->  ps )
Assertion
Ref Expression
vtoclb  |-  ( ch  <->  th )
Distinct variable groups:    x, A    ch, x    th, x
Allowed substitution hints:    ph( x)    ps( x)

Proof of Theorem vtoclb
StepHypRef Expression
1 vtoclb.1 . 2  |-  A  e. 
_V
2 vtoclb.2 . . 3  |-  ( x  =  A  ->  ( ph 
<->  ch ) )
3 vtoclb.3 . . 3  |-  ( x  =  A  ->  ( ps 
<->  th ) )
42, 3bibi12d 234 . 2  |-  ( x  =  A  ->  (
( ph  <->  ps )  <->  ( ch  <->  th ) ) )
5 vtoclb.4 . 2  |-  ( ph  <->  ps )
61, 4, 5vtocl 2780 1  |-  ( ch  <->  th )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    = wceq 1343    e. wcel 2136   _Vcvv 2726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-v 2728
This theorem is referenced by:  alexeq  2852  sbss  3517
  Copyright terms: Public domain W3C validator