ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtocl2 Unicode version

Theorem vtocl2 2767
Description: Implicit substitution of classes for setvar variables. (Contributed by NM, 26-Jul-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.)
Hypotheses
Ref Expression
vtocl2.1  |-  A  e. 
_V
vtocl2.2  |-  B  e. 
_V
vtocl2.3  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
vtocl2.4  |-  ph
Assertion
Ref Expression
vtocl2  |-  ps
Distinct variable groups:    x, y, A   
x, B, y    ps, x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem vtocl2
StepHypRef Expression
1 vtocl2.1 . . . . . 6  |-  A  e. 
_V
21isseti 2720 . . . . 5  |-  E. x  x  =  A
3 vtocl2.2 . . . . . 6  |-  B  e. 
_V
43isseti 2720 . . . . 5  |-  E. y 
y  =  B
5 eeanv 1912 . . . . . 6  |-  ( E. x E. y ( x  =  A  /\  y  =  B )  <->  ( E. x  x  =  A  /\  E. y 
y  =  B ) )
6 vtocl2.3 . . . . . . . 8  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  <->  ps )
)
76biimpd 143 . . . . . . 7  |-  ( ( x  =  A  /\  y  =  B )  ->  ( ph  ->  ps ) )
872eximi 1581 . . . . . 6  |-  ( E. x E. y ( x  =  A  /\  y  =  B )  ->  E. x E. y
( ph  ->  ps )
)
95, 8sylbir 134 . . . . 5  |-  ( ( E. x  x  =  A  /\  E. y 
y  =  B )  ->  E. x E. y
( ph  ->  ps )
)
102, 4, 9mp2an 423 . . . 4  |-  E. x E. y ( ph  ->  ps )
11 nfv 1508 . . . . 5  |-  F/ y ps
121119.36-1 1653 . . . 4  |-  ( E. y ( ph  ->  ps )  ->  ( A. y ph  ->  ps )
)
1310, 12eximii 1582 . . 3  |-  E. x
( A. y ph  ->  ps )
141319.36aiv 1881 . 2  |-  ( A. x A. y ph  ->  ps )
15 vtocl2.4 . . 3  |-  ph
1615ax-gen 1429 . 2  |-  A. y ph
1714, 16mpg 1431 1  |-  ps
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104   A.wal 1333    = wceq 1335   E.wex 1472    e. wcel 2128   _Vcvv 2712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-ext 2139
This theorem depends on definitions:  df-bi 116  df-nf 1441  df-sb 1743  df-clab 2144  df-cleq 2150  df-clel 2153  df-v 2714
This theorem is referenced by:  undifexmid  4154  caovord  5989  ctssexmid  7087
  Copyright terms: Public domain W3C validator