Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bibi12d | Unicode version |
Description: Deduction joining two equivalences to form equivalence of biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
imbi12d.1 | |
imbi12d.2 |
Ref | Expression |
---|---|
bibi12d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi12d.1 | . . 3 | |
2 | 1 | bibi1d 232 | . 2 |
3 | imbi12d.2 | . . 3 | |
4 | 3 | bibi2d 231 | . 2 |
5 | 2, 4 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm5.32 449 bi2bian9 598 cleqh 2265 abbi 2279 cleqf 2332 cbvreuvw 2697 vtoclb 2782 vtoclbg 2786 ceqsexg 2853 elabgf 2867 reu6 2914 ru 2949 sbcbig 2996 sbcne12g 3062 sbcnestgf 3095 preq12bg 3752 nalset 4111 undifexmid 4171 exmidsssn 4180 exmidsssnc 4181 exmidundif 4184 opthg 4215 opelopabsb 4237 wetriext 4553 opeliunxp2 4743 resieq 4893 elimasng 4971 cbviota 5157 iota2df 5176 fnbrfvb 5526 fvelimab 5541 fmptco 5650 fsng 5657 fressnfv 5671 funfvima3 5717 isorel 5775 isocnv 5778 isocnv2 5779 isotr 5783 ovg 5976 caovcang 5999 caovordg 6005 caovord3d 6008 caovord 6009 opeliunxp2f 6202 dftpos4 6227 ecopovsym 6593 ecopovsymg 6596 xpf1o 6806 nneneq 6819 supmoti 6954 supsnti 6966 isotilem 6967 isoti 6968 ltanqg 7337 ltmnqg 7338 elinp 7411 prnmaxl 7425 prnminu 7426 ltasrg 7707 axpre-ltadd 7823 zextle 9278 zextlt 9279 xlesubadd 9815 rexfiuz 10927 climshft 11241 dvdsext 11789 ltoddhalfle 11826 halfleoddlt 11827 bezoutlemmo 11935 bezoutlemeu 11936 bezoutlemle 11937 bezoutlemsup 11938 dfgcd3 11939 dvdssq 11960 rpexp 12081 pcdvdsb 12247 xmeteq0 12959 comet 13099 dedekindeulemuub 13195 dedekindeulemloc 13197 dedekindicclemuub 13204 dedekindicclemloc 13206 logltb 13395 bj-nalset 13737 bj-d0clsepcl 13767 bj-nn0sucALT 13820 |
Copyright terms: Public domain | W3C validator |