Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > bibi12d | Unicode version |
Description: Deduction joining two equivalences to form equivalence of biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
imbi12d.1 | |
imbi12d.2 |
Ref | Expression |
---|---|
bibi12d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi12d.1 | . . 3 | |
2 | 1 | bibi1d 232 | . 2 |
3 | imbi12d.2 | . . 3 | |
4 | 3 | bibi2d 231 | . 2 |
5 | 2, 4 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wb 104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: pm5.32 450 bi2bian9 603 cleqh 2270 abbi 2284 cleqf 2337 cbvreuvw 2702 vtoclb 2787 vtoclbg 2791 ceqsexg 2858 elabgf 2872 reu6 2919 ru 2954 sbcbig 3001 sbcne12g 3067 sbcnestgf 3100 preq12bg 3758 nalset 4117 undifexmid 4177 exmidsssn 4186 exmidsssnc 4187 exmidundif 4190 opthg 4221 opelopabsb 4243 wetriext 4559 opeliunxp2 4749 resieq 4899 elimasng 4977 cbviota 5163 iota2df 5182 fnbrfvb 5535 fvelimab 5550 fmptco 5660 fsng 5667 fressnfv 5681 funfvima3 5727 isorel 5785 isocnv 5788 isocnv2 5789 isotr 5793 ovg 5989 caovcang 6012 caovordg 6018 caovord3d 6021 caovord 6022 opeliunxp2f 6215 dftpos4 6240 ecopovsym 6606 ecopovsymg 6609 xpf1o 6819 nneneq 6832 supmoti 6967 supsnti 6979 isotilem 6980 isoti 6981 ltanqg 7351 ltmnqg 7352 elinp 7425 prnmaxl 7439 prnminu 7440 ltasrg 7721 axpre-ltadd 7837 zextle 9292 zextlt 9293 xlesubadd 9829 rexfiuz 10942 climshft 11256 dvdsext 11804 ltoddhalfle 11841 halfleoddlt 11842 bezoutlemmo 11950 bezoutlemeu 11951 bezoutlemle 11952 bezoutlemsup 11953 dfgcd3 11954 dvdssq 11975 rpexp 12096 pcdvdsb 12262 xmeteq0 13114 comet 13254 dedekindeulemuub 13350 dedekindeulemloc 13352 dedekindicclemuub 13359 dedekindicclemloc 13361 logltb 13550 bj-nalset 13892 bj-d0clsepcl 13922 bj-nn0sucALT 13975 |
Copyright terms: Public domain | W3C validator |