![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > bibi12d | Unicode version |
Description: Deduction joining two equivalences to form equivalence of biconditionals. (Contributed by NM, 5-Aug-1993.) |
Ref | Expression |
---|---|
imbi12d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
imbi12d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
bibi12d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imbi12d.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | bibi1d 233 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | imbi12d.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | bibi2d 232 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | bitrd 188 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 |
This theorem is referenced by: pm5.32 453 bi2bian9 608 cleqh 2293 abbi 2307 cleqf 2361 cbvreuvw 2732 vtoclb 2818 vtoclbg 2822 ceqsexg 2889 elabgf 2903 reu6 2950 ru 2985 sbcbig 3033 sbcne12g 3099 sbcnestgf 3133 preq12bg 3800 nalset 4160 undifexmid 4223 exmidsssn 4232 exmidsssnc 4233 exmidundif 4236 opthg 4268 opelopabsb 4291 wetriext 4610 opeliunxp2 4803 resieq 4953 elimasng 5034 cbviota 5221 iota2df 5241 fnbrfvb 5598 fvelimab 5614 fmptco 5725 fsng 5732 fressnfv 5746 funfvima3 5793 isorel 5852 isocnv 5855 isocnv2 5856 isotr 5860 ovg 6059 caovcang 6082 caovordg 6088 caovord3d 6091 caovord 6092 uchoice 6192 opeliunxp2f 6293 dftpos4 6318 ecopovsym 6687 ecopovsymg 6690 xpf1o 6902 nneneq 6915 supmoti 7054 supsnti 7066 isotilem 7067 isoti 7068 ltanqg 7462 ltmnqg 7463 elinp 7536 prnmaxl 7550 prnminu 7551 ltasrg 7832 axpre-ltadd 7948 zextle 9411 zextlt 9412 xlesubadd 9952 rexfiuz 11136 climshft 11450 dvdsext 12000 ltoddhalfle 12037 halfleoddlt 12038 bezoutlemmo 12146 bezoutlemeu 12147 bezoutlemle 12148 bezoutlemsup 12149 dfgcd3 12150 dvdssq 12171 rpexp 12294 pcdvdsb 12461 isnsg 13275 nsgbi 13277 elnmz 13281 nmzbi 13282 nmznsg 13286 islidlm 13978 xmeteq0 14538 comet 14678 dedekindeulemuub 14796 dedekindeulemloc 14798 dedekindicclemuub 14805 dedekindicclemloc 14807 logltb 15050 bj-nalset 15457 bj-d0clsepcl 15487 bj-nn0sucALT 15540 ltlenmkv 15630 |
Copyright terms: Public domain | W3C validator |