| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vtoclb | GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 23-Dec-1993.) |
| Ref | Expression |
|---|---|
| vtoclb.1 | ⊢ 𝐴 ∈ V |
| vtoclb.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
| vtoclb.3 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) |
| vtoclb.4 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| vtoclb | ⊢ (𝜒 ↔ 𝜃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtoclb.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | vtoclb.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 3 | vtoclb.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) | |
| 4 | 2, 3 | bibi12d 235 | . 2 ⊢ (𝑥 = 𝐴 → ((𝜑 ↔ 𝜓) ↔ (𝜒 ↔ 𝜃))) |
| 5 | vtoclb.4 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 6 | 1, 4, 5 | vtocl 2828 | 1 ⊢ (𝜒 ↔ 𝜃) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2177 Vcvv 2773 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-v 2775 |
| This theorem is referenced by: alexeq 2900 sbss 3569 |
| Copyright terms: Public domain | W3C validator |