ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtoclb GIF version

Theorem vtoclb 2787
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 23-Dec-1993.)
Hypotheses
Ref Expression
vtoclb.1 𝐴 ∈ V
vtoclb.2 (𝑥 = 𝐴 → (𝜑𝜒))
vtoclb.3 (𝑥 = 𝐴 → (𝜓𝜃))
vtoclb.4 (𝜑𝜓)
Assertion
Ref Expression
vtoclb (𝜒𝜃)
Distinct variable groups:   𝑥,𝐴   𝜒,𝑥   𝜃,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem vtoclb
StepHypRef Expression
1 vtoclb.1 . 2 𝐴 ∈ V
2 vtoclb.2 . . 3 (𝑥 = 𝐴 → (𝜑𝜒))
3 vtoclb.3 . . 3 (𝑥 = 𝐴 → (𝜓𝜃))
42, 3bibi12d 234 . 2 (𝑥 = 𝐴 → ((𝜑𝜓) ↔ (𝜒𝜃)))
5 vtoclb.4 . 2 (𝜑𝜓)
61, 4, 5vtocl 2784 1 (𝜒𝜃)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1348  wcel 2141  Vcvv 2730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-ext 2152
This theorem depends on definitions:  df-bi 116  df-nf 1454  df-sb 1756  df-clab 2157  df-cleq 2163  df-clel 2166  df-v 2732
This theorem is referenced by:  alexeq  2856  sbss  3523
  Copyright terms: Public domain W3C validator