| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > vtoclb | GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 23-Dec-1993.) | 
| Ref | Expression | 
|---|---|
| vtoclb.1 | ⊢ 𝐴 ∈ V | 
| vtoclb.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | 
| vtoclb.3 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) | 
| vtoclb.4 | ⊢ (𝜑 ↔ 𝜓) | 
| Ref | Expression | 
|---|---|
| vtoclb | ⊢ (𝜒 ↔ 𝜃) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vtoclb.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | vtoclb.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
| 3 | vtoclb.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) | |
| 4 | 2, 3 | bibi12d 235 | . 2 ⊢ (𝑥 = 𝐴 → ((𝜑 ↔ 𝜓) ↔ (𝜒 ↔ 𝜃))) | 
| 5 | vtoclb.4 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 6 | 1, 4, 5 | vtocl 2818 | 1 ⊢ (𝜒 ↔ 𝜃) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2167 Vcvv 2763 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-v 2765 | 
| This theorem is referenced by: alexeq 2890 sbss 3558 | 
| Copyright terms: Public domain | W3C validator |