![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > vtoclb | GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 23-Dec-1993.) |
Ref | Expression |
---|---|
vtoclb.1 | ⊢ 𝐴 ∈ V |
vtoclb.2 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) |
vtoclb.3 | ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) |
vtoclb.4 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
vtoclb | ⊢ (𝜒 ↔ 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtoclb.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | vtoclb.2 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) | |
3 | vtoclb.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) | |
4 | 2, 3 | bibi12d 235 | . 2 ⊢ (𝑥 = 𝐴 → ((𝜑 ↔ 𝜓) ↔ (𝜒 ↔ 𝜃))) |
5 | vtoclb.4 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
6 | 1, 4, 5 | vtocl 2814 | 1 ⊢ (𝜒 ↔ 𝜃) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2164 Vcvv 2760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-v 2762 |
This theorem is referenced by: alexeq 2886 sbss 3554 |
Copyright terms: Public domain | W3C validator |